Driven by technological advances and investigator demand, this Core has evolved from the previous goal of providing DNA microarray, proteomics and metabolomics services all in a single integrated Core to a core specialized on proteome responses. To most efficiently utilize available resources it was decided to contract out DNA microarray services and consolidate the metabolomic services into Core A (Analytical Chemistry Core) while focusing on Proteomic Services in Core B. The Core will develop and provide workflows for proteomics services including profiling of complex protein mixtures (with protein separation and mass spectrometric identification), analysis of posttranslational modification (PTM), including phosphorylation, thiol oxidation, ubiquitination, and activity-based protein profiling of proteases (caspases, etc.). In conjunction with Core A (Metabolomics), the Core will also implement post-MS bioinformatic analyses to enable efficient and comprehensive processing, archival, and utilization of proteomic data sets. Experimental approaches practiced in this core will be based on two-dimensional (2D) separation of complex protein mixtures by 2D gel electrophoresis (2DGE) and 2D liquid chromatography (2DLC). Fractionated mixtures will be analysed by three different mass spectrometry approaches: (i) analysis of trypic in gel digests from 2D gel spots and (ii) analysis of complex peptide mixtures prepared by in-solution trypsin digestion by (iia) offline LC-MALDI MS/MS or (iib) online LC-MS/MS. Proteomic datasets generated by these experimental approaches will be used for protein identification quantitative protein profiling, and PTM analysis. In collaboration with core A, the Core will also provide analytical support for storage and access of proteomics data. Additional integrating themes with other cores will be to find characteristic responses of human and other organisms to given agents, identifying biomarkers of early response, and finding no effect levels for the most sensitive biomarkers of effect. The emphasis will be on increasing efficiency of resource utilization. Thus, highly trained Core personnel will concentrate their efforts on establishing innovative and robust workflows as well as performing technically demanding functions, providing help for planning experiments, and training Project personnel in conducting their own proteomics experiments where feasible.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Mao, Yuxin; Pan, Yang; Li, Xuan et al. (2018) High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip 18:2720-2729
Burmistrov, Vladimir; Morisseau, Christophe; Harris, Todd R et al. (2018) Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 76:510-527
Stamou, Marianna; Grodzki, Ana Cristina; van Oostrum, Marc et al. (2018) Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J Neuroinflammation 15:7
Huo, Jingqian; Li, Zhenfeng; Wan, Debin et al. (2018) Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. J Agric Food Chem 66:11284-11290
Zamuruyev, Konstantin O; Borras, Eva; Pettit, Dayna R et al. (2018) Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 1006:49-60
Zamuruyev, Konstantin O; Schmidt, Alexander J; Borras, Eva et al. (2018) Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 12:036020
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Burmistrov, Vladimir; Morisseau, Christophe; Pitushkin, Dmitry et al. (2018) Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 28:2302-2313
Tu, Ranran; Armstrong, Jillian; Lee, Kin Sing Stephen et al. (2018) Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci Rep 8:5279
Wang, Weicang; Yang, Jun; Zhang, Jianan et al. (2018) Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proc Natl Acad Sci U S A 115:5283-5288

Showing the most recent 10 out of 1149 publications