The Training Core will interact with all aspects of the Center by virtue of its goal, which is to facilitate the teaching of creative science thinking, especially by creating an atmosphere that nurtures students'creative insights (DeHaan, 2011). Creative insight stems from abstract thinking plus two types of mental operations: 1) associative (divergent) thinking involving thoughts that are defocused, intuitive and, importantly, receptive to a range of associations;and 2) analytical (convergent) thinking, i.e., the capacity to analyze, synthesize and focus (DeHaan, 2011). Furthermore, we are acutely aware of the need to train scientists who can work across traditional disciplinary boundaries. Thus, we are striving for an integrated model for science education (Lorsch and Nichols, 2011) that provides interdisciplinary training that enables trainees to speak the many scientific languages spoken across the range of the research undertaken by the SRP Center investigative team. Our hypothesis is that cross-training of students participating in the MSU P42 Center Grant in disciplines not traditionally linked with the university structure will be achieved through a multifaceted training approach involving laboratory based research combined with formal and informal instruction.
The Specific Aims are: SAI) Provide interdisciplinary training to predoctoral and postdoctoral students through research collaborations across biomedical and non-biomedical research projects and cores within the Michigan State University Superfund Research Program (MSU SRP) Center;SA2) Provide interdisciplinary training to predoctoral and postdoctoral students through a monthly journal club;and SA3) Provide interdisciplinary training to predoctoral and postdoctoral students through formal instruction (e.g.. Computational Biology and Dose Response courses, Distinguished Scholars in Toxicology Lecture Series as well as other seminars on the MSU campus, travel to provide special educational opportunities and elective courses designed to facilitate designed to facilitate movement towards "Convergence" the third revolution in the biological sciences, i.e., convergence ofthe life sciences, engineering and the physical sciences Sharp et al., 2011). The implementation of these specific aims will, in a synergistic fashion, facilitate the training of graduate students and postdoctoral fellows who will be afforded a forward thinking interdisciplinary focus and, therefore, be prepared to tackle current and future environmentally-related human health issues.

Public Health Relevance

The Training Core has developed an innovative combination of activities involving fostering research that crosses/bridges biomedical, environmental, and engineering research, an interdisciplinary Journal Club and interdisciplinary training through formal instruction. These is designed to facilitate integration of the SRP investigative team's research efforts through a coordinated multifaceted training program which emphasizes cross disciplinary approaches to the research efforts at hand.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004911-23
Application #
8695362
Study Section
Special Emphasis Panel (ZES1-LWJ-D)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
23
Fiscal Year
2014
Total Cost
$80,005
Indirect Cost
$27,884
Name
Michigan State University
Department
Type
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Hwang, Hye Jin; Dornbos, Peter; Steidemann, Michelle et al. (2016) Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol 304:121-32
Hwang, Hye Jin; Dornbos, Peter; LaPres, John J (2016) Data on AHR-dependent changes in the mitochondrial proteome in response to ,3,7,8-tetrachlorodibenzo-p-dioxin. Data Brief 8:191-5
Stedtfeld, Robert D; Williams, Maggie R; Fakher, Umama et al. (2016) Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens. FEMS Microbiol Ecol 92:
Kovalova, Natalia; Manzan, Maria; Crawford, Robert et al. (2016) Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells. Toxicol Appl Pharmacol 309:15-23
Tian, Haoting; Gao, Juan; Li, Hui et al. (2016) Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite. Sci Rep 6:32949
Phadnis-Moghe, Ashwini S; Li, Jinpeng; Crawford, Robert B et al. (2016) SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Appl Pharmacol 310:41-50
Nault, Rance; Fader, Kelly A; Kirby, Mathew P et al. (2016) Pyruvate Kinase Isoform Switching and Hepatic Metabolic Reprogramming by the Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Toxicol Sci 149:358-71
Wang, Qiong; Fish, Jordan A; Gilman, Mariah et al. (2015) Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32
Nault, Rance; Colbry, Dirk; Brandenberger, Christina et al. (2015) Development of a computational high-throughput tool for the quantitative examination of dose-dependent histological features. Toxicol Pathol 43:366-75
Liu, Cun; Gu, Cheng; Yu, Kai et al. (2015) Integrating structural and thermodynamic mechanisms for sorption of PCBs by montmorillonite. Environ Sci Technol 49:2796-805

Showing the most recent 10 out of 374 publications