Biomarkers of asbestos exposure: All forms of asbestos including the amphiboles (crocidolite, amosite, tremolite, actinolite, and anthophyllite) as well as the serpentine form chrysotile, cause mesothelioma and cancer of the lung. Therefore, it would be highly desirable to have available sensitive and specific biomarkers of asbestos exposure in order to assess potential inter-individual risks of developing mesothelioma or lung cancer. In on-going studies, we are developing serum metabolomic markers of exposure to asbestos. This has involved the implementation of nanospray ultraperformance liquid chromatography (UPLC) in combination with high resolution tandem mass spectrometry (MS/MS). Individual samples are extracted with a suitable solvent (Folch extraction) then aqueous and organic phases are subjected to analysis by high resolution nanospray UPLC-MS. Individual chromatograms are aligned using a combination of open-source and proprietary software. Chromatograms from control samples are then interrogated against experimental samples for differences in intensity of each MS signal. Identification of metabolites is conducted by using different modes of MS/MS analysis. These studies have resulted in the generation of a rich data-set of biomarkers, in which a number of metabolites are dysregulated in asbestos exposure when compared with control non-exposed individuals. Therefore, we are poised to develop a robust biomarker panels for both asbestos exposure and mesothelioma. We will test the hypotheses that: 1) Asbestos exposure will increase oxidative stress as revealed by current serum oxidative stress biomarkers. (2) Metabolomics analysis of serum using ultra-high resolution LC-MS will reveal novel biomarkers of asbestos exposure and mesothelioma that can be characterized using modern bioanalytical techniques. (3) Profiling of human serum proteins will identify signatures of asbestos exposure and mesothelioma. These hypotheses will be tested under the following three Specific Aims.
Aim 1 : To quantify biomarkers of oxidative stress and identify and quantify differentially secreted metabolites in the serum of human subjects exposed to asbestos, serum from subjects with mesothelioma, and control serum from normal unexposed control subjects.
Aim 2 : To quantify biomarkers of oxidative stress and identify and quantify differentially secreted metabolites in asbestos-exposed immortalized mouse cells and serum provided by Project 4 from mice genetically engineered to develop mesothelioma compared with isogenic non-exposed mice.
Aim 3 : To analyze serum HMGB1 and profile serum proteins (SOMAmer assay) in asbestos-exposed and unexposed individuals to identify asbestos exposure biomarkers and to analyze serum fibulin-3 as a mesothelioma biomarker to complement serum metabolomic biomarkers obtained in Aim 1. Successful completion of these studies of asbestos exposure would have a significant translational impact for risk assessment and management within the local community. It would have an immediate impact on risk communication and risk management that would be rapidly translated to other members of the SRP through the regular research meetings. It would also impact on regulators of risk assessment and risk management. Another translational impact would be the use of biomarkers for monitoring disease prevention and treatment as well as the identification of individuals at risk for follow-up studies. It will be possible to identify particular individuals who have been exposed to asbestos and have a high risk profile for careful clinical monitoring or asbestos-exposed individuals lacking a high risk profile.

Public Health Relevance

All forms of asbestos including the amphiboles as well as the serpentine form chrysotile, cause mesothelioma and cancer of the lung. We are developing sensitive and specific rum biomarkers of asbestos exposure in order to assess potential inter-individual risks of developing mesothelioma or lung cancer. The new biomarker panel will make it possible to identify particular individuals who have been exposed to asbestos and have a high risk profile for careful clinical monitoring or asbestos-exposed individuals lacking a high risk profile.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
1P42ES023720-01
Application #
8651093
Study Section
Special Emphasis Panel (ZES1-LKB-K (S))
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$285,215
Indirect Cost
$96,151
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Salamatipour, Ashkan; Mohanty, Sanjay K; Pietrofesa, Ralph A et al. (2016) Asbestos Fiber Preparation Methods Affect Fiber Toxicity. Environ Sci Technol Lett 3:270-274
Clapp, Justin T; Roberts, Jody A; Dahlberg, Britt et al. (2016) Realities of environmental toxicity and their ramifications for community engagement. Soc Sci Med 170:143-151
Pietrofesa, Ralph A; Velalopoulou, Anastasia; Lehman, Stacey L et al. (2016) Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel. Int J Mol Sci 17:
Frey, Alexander J; Wang, Qingqing; Busch, Christine et al. (2016) Validation of highly sensitive simultaneous targeted and untargeted analysis of keto-steroids by Girard P derivatization and stable isotope dilution-liquid chromatography-high resolution mass spectrometry. Steroids 116:60-66
Pietrofesa, Ralph A; Velalopoulou, Anastasia; Arguiri, Evguenia et al. (2016) Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice. Carcinogenesis 37:177-87
Guo, Lili; Worth, Andrew J; Mesaros, Clementina et al. (2016) Diisopropylethylamine/hexafluoroisopropanol-mediated ion-pairing ultra-high-performance liquid chromatography/mass spectrometry for phosphate and carboxylate metabolite analysis: utility for studying cellular metabolism. Rapid Commun Mass Spectrom 30:1835-45
Kadariya, Yuwaraj; Menges, Craig W; Talarchek, Jacqueline et al. (2016) Inflammation-Related IL1β/IL1R Signaling Promotes the Development of Asbestos-Induced Malignant Mesothelioma. Cancer Prev Res (Phila) 9:406-14
Kadariya, Yuwaraj; Cheung, Mitchell; Xu, Jinfei et al. (2016) Bap1 Is a Bona Fide Tumor Suppressor: Genetic Evidence from Mouse Models Carrying Heterozygous Germline Bap1 Mutations. Cancer Res 76:2836-44
Ohar, Jill A; Cheung, Mitchell; Talarchek, Jacqueline et al. (2016) Germline BAP1 Mutational Landscape of Asbestos-Exposed Malignant Mesothelioma Patients with Family History of Cancer. Cancer Res 76:206-15
Mesaros, Clementina; Blair, Ian A (2016) Mass spectrometry-based approaches to targeted quantitative proteomics in cardiovascular disease. Clin Proteomics 13:20

Showing the most recent 10 out of 20 publications