Project 3 of the Johns Hopkins Alzheimer's Disease Research Center (ADRC) is titled """"""""Neuronal activity-dependent secretion of AB and immediate early genes"""""""". This project focuses on the activity-regulated gene termed Arc/Arg3.1, in order to identify mechanisms that are critical for secretion of the amyloid-beta peptide (AB) from neurons. Arc is an immediate early gene that is transcriptionally induced in response to forms of neuronal activity that underlie learning and memory. The overarching goal of the study is to examine the molecular mechanisms that underlie activity-dependent secretion of AB and to examine their potential impact on synaptic dysfunction in Alzheimer's disease (AD). There are four specific aims: (1) Aim 1: To examine the cellular basis of Arc-dependent AB secretion. We will test the hypothesis that Arc enhances the processing of amyloid precursor protein (APP) by gamma secretase in recycling endosomes. We will examine the model that Arc enhances AB generation by recruiting gamma secretase, either from the plasma membrane or intracellular endosomes, to endosomes that traffic APP from the plasma membrane. (2) Aim 2: To examine the hypothesis that Arc binding to presenilin 1 (PS-1) is essential for Arc-dependent AB generation. We will define regions of Arc and PS-1 that are necessary and sufficient for binding. As part of this analysis, we will identify peptides that can selectively block their interaction and we will test if these peptides can interrupt activity-dependent generation of AB in primary neuronal cultures. (3) Aim 3: To examine the hypothesis that Arc contributes to AB generation and plaque deposition in vivo. These studies will monitor the age and gender dependence of soluble and insoluble AB40/42 and plaque deposition in transgenic APPswe/PS1AE9/Arc+/+ mice versus APPswe/PS1AE9/Arc-/- mice. (4) Aim 4: To examine expression of Arc and associated proteins in the brains of cognitively normal and cognitively impaired subjects. Tissue samples will be obtained through the Neuropathology Core (Core D) of the ADRC. Preliminary studies indicate that Arc protein is up-regulated in brains of patients of AD. We will determine if this is consistent across a larger group of subjects and assess the association with plaques and with dementia severity.

Public Health Relevance

Understanding the mechanisms that influence the connections between brain cells and the accumulation of Alzheimer's pathology (amyloid plaques and neurofibrillary tangles) in the brains of some elderly subjects is of crucial importance in developing strategies to combat Alzheimer's disease, a neurodegenerative disorder which affects over 6 million Americans.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-31
Application #
8662625
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
31
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Hibar, Derrek P (see original citation for additional authors) (2017) Novel genetic loci associated with hippocampal volume. Nat Commun 8:13624
Haberman, Rebecca P; Koh, Ming Teng; Gallagher, Michela (2017) Heightened cortical excitability in aged rodents with memory impairment. Neurobiol Aging 54:144-151
Jeong, Yun Ha; Ling, Jonathan P; Lin, Sophie Z et al. (2017) Tdp-43 cryptic exons are highly variable between cell types. Mol Neurodegener 12:13
Weintraub, Sandra; Besser, Lilah; Dodge, Hiroko H et al. (2017) Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord :
Rawlings, Andreea M; Sharrett, A Richey; Mosley, Thomas H et al. (2017) Glucose Peaks and the Risk of Dementia and 20-Year Cognitive Decline. Diabetes Care 40:879-886
Mori, Susumu; Kageyama, Yusuke; Hou, Zhipeng et al. (2017) Elucidation of White Matter Tracts of the Human Amygdala by Detailed Comparison between High-Resolution Postmortem Magnetic Resonance Imaging and Histology. Front Neuroanat 11:16
Valera, Elvira; Spencer, Brian; Mott, Jennifer et al. (2017) MicroRNA-101 Modulates Autophagy and Oligodendroglial Alpha-Synuclein Accumulation in Multiple System Atrophy. Front Mol Neurosci 10:329
Brenowitz, Willa D; Keene, C Dirk; Hawes, Stephen E et al. (2017) Alzheimer's disease neuropathologic change, Lewy body disease, and vascular brain injury in clinic- and community-based samples. Neurobiol Aging 53:83-92
Gross, Alden L; Hassenstab, Jason J; Johnson, Sterling C et al. (2017) A classification algorithm for predicting progression from normal cognition to mild cognitive impairment across five cohorts: The preclinical AD consortium. Alzheimers Dement (Amst) 8:147-155
Liu, Peiying; Li, Yang; Pinho, Marco et al. (2017) Cerebrovascular reactivity mapping without gas challenges. Neuroimage 146:320-326

Showing the most recent 10 out of 713 publications