Project 3 of the Johns Hopkins Alzheimer s Disease Research Center (JHADRC) is focused on the regulation of ?-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors (AMPARs) by amyloid ? (A?) in order to identify mechanisms by which A? alters synaptic transmission and plasticity during the early stages of Alzheimer s disease (AD) prior to cell death. AMPARs mediate the majority of fast excitatory neurotransmission in the central nervous system and are dynamically regulated by modifications such as phosphorylation and by interactions with other proteins. This regulation of AMPARs is critical for modulating synaptic transmission and plasticity. We propose that A? induces synaptic deficits by interfering with the normal regulation of AMPARs, resulting in down-regulation of AMPARs at excitatory synapses. Understanding this process is critical both for understanding early disease pathology and for generating effective therapies. Our project consists of the following three specific aims: (1) To test the hypothesis that elevated A? alters AMPAR phosphorylation to reduce surface AMPAR expression by altering interactions with proteins involved in receptor trafficking.
This aim will allow us to identify cellular targets downstream of A? that may provide a mechanistic focus to directly slow or halt early progression of A?-mediated cognitive decline. (2) To use novel site-specific AMPAR phosphorylation mutant mice to determine the physiological and A?-mediated pathological role of phosphorylation in AMPAR trafficking, basal synaptic transmission, and synaptic plasticity.
This aim will provide novel insight into the role of specific phosphorylation sites in different aspects of A?-induced synapse dysfunction. (3) To test the hypothesis that physiological and behavioral deficits induced by A? in vivo can be rescued with compensatory alterations in AMPAR modulation. In this aim we will take advantage of a transgenic mouse model of AD (APPswe/PS1dE9 mice) that more closely mimics the exposure of neurons to chronic, endogenously-produced A?, as occurs in AD patients. These mice will be used to determine if disruption of AMPAR phosphorylation or specific protein interactions can ameliorate deficits in synaptic plasticity and memory induced by chronic A? elevation. Through the studies in this proposal, we will identify mechanisms underlying A?-induced decreases in synaptic AMPAR expression and will determine if inhibition of these molecular changes is sufficient to rescue A?-induced deficits in synaptic transmission, synaptic plasticity, and memory.

Public Health Relevance

PROJECT 3 - NARRATIVE Amyloid ? (A?) is thought to play a key role in the pathogenesis of Alzheimer s disease (AD) as brains from AD patients present with an accumulation of A?-rich plaques. In this project we will elucidate how A? disrupts brain function during the early stages of Alzheimer s disease before neuronal cell death occurs. We will define the effects of A? on synaptic connections in the brain that lead to deficits in memory and other cognitive functions. These studies may reveal novel therapeutic approaches to slow or halt the progression of cognitive decline associated with Alzheimer s disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-35
Application #
9462700
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
35
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Ganguli, Mary; Albanese, Emiliano; Seshadri, Sudha et al. (2018) Population Neuroscience: Dementia Epidemiology Serving Precision Medicine and Population Health. Alzheimer Dis Assoc Disord 32:1-9
Tsapkini, Kyrana; Webster, Kimberly T; Ficek, Bronte N et al. (2018) Electrical brain stimulation in different variants of primary progressive aphasia: A randomized clinical trial. Alzheimers Dement (N Y) 4:461-472
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Riello, Marianna; Faria, Andreia V; Ficek, Bronte et al. (2018) The Role of Language Severity and Education in Explaining Performance on Object and Action Naming in Primary Progressive Aphasia. Front Aging Neurosci 10:346
Petyuk, Vladislav A; Chang, Rui; Ramirez-Restrepo, Manuel et al. (2018) The human brainome: network analysis identifies HSPA2 as a novel Alzheimer’s disease target. Brain 141:2721-2739
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Ayhan, Fatma; Perez, Barbara A; Shorrock, Hannah K et al. (2018) SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J 37:
Sathe, Gajanan; Na, Chan Hyun; Renuse, Santosh et al. (2018) Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 15:29
Chen, Lin; Wei, Zhiliang; Chan, Kannie W Y et al. (2018) Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neuroimage 188:380-390
Gomez, Gabriela; Beason-Held, Lori L; Bilgel, Murat et al. (2018) Metabolic Syndrome and Amyloid Accumulation in the Aging Brain. J Alzheimers Dis 65:629-639

Showing the most recent 10 out of 830 publications