The Emory Alzheimer's Disease Research Center (ADRC) provides Georgia and the region with comprehensive clinical, research, and educational programs This renewal application outlines our success in building an environment that encourages and supports innovative projects directed at understanding the pathogenesis and developing new treatments for AD and other age-related cognitive disorders. We benefit from generous institutional support from Emory, one of the nation's fastest growing research academic enterprises, and collaborative interactions with the Emory Center for Neurodegenerative Disease, and the Yerkes National Primate Center. Our 5 cores demonstrate remarkable productivity in recruiting patients from the culturally diverse clinical specialty programs at Emory and Grady Memorial Hospitals for participation in our ADRC registry, the autopsy program, and the various clinical research activities. Data from these cores are captured and stored for distribution to local researchers and for national collaborations. Our biospecimen banks include well-characterized neuropathological case materials, and DNA, CSF, and blood samples from our clinical populations. These valuable resources are distributed widely for a variety of approved studies of genetic, molecular, pharmacological, and pathological investigations. The ADRC educational programs reach a broad audience of students, health care professionals, and the public. We propose three cutting edge research projects that are closely integrated with ADRC Cores: Project 1 (Dr. Ben Hampstead) "Comparison of Memory Rehabilitation Techniques in Mild Cognitive Impairment", will use a novel approach to rehabilitation of memory combining behavioral components with functional brain imaging to address whether rehabilitation techniques target the intended brain regions and to determine the signature of brain activity associated with successful rehabilitation. Project 2, "miRNA Expression Modulation of Alzheimer Disease Pathogenesis" (Dr. Peng Jin) will extend studies of miRNAs selectively altered in AD brain and evaluate their role in the post-transcriptional regulation of the expression of specific mRNAs that are involved in AD pathogenesis. Project 3, "Norepinephrine-TrkB Interactions in Alzheimer's Disease" (Dr. David Weinshenker) studies a novel interaction between catecholamines and the TrkB receptor in animal and cell culture models of AD, as well as in brain tissues obtained from controls, MCI, and AD cases. Collectively, these projects span clinical, translational, and basic science research and will advance our understanding of cognition in normal aging and its transitions to mild cognitive impairment, AD, and related neurodegenerative disorders.

Public Health Relevance

Georgia has one of the fast growing elderly populations in the country, anticipating a major increase in AD and other age-related neurodegenerative conditions in the decades ahead. Advances in clinical care, research, and education are essential to successfully confront the challenge. Renewal of the Emory ADRC will sustain progress in better understanding disease pathogenesis, enable earlier identification of at-risk individuals, and catalyze development of more effective treatments.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J2))
Program Officer
Phelps, Creighton H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Matveev, Sergey V; Spielmann, Hans Peter; Metts, Brittney M et al. (2014) A distinct subfraction of A? is responsible for the high-affinity Pittsburgh compound B-binding site in Alzheimer's disease brain. J Neurochem 131:356-68
England, Heather B; Gillis, M Meredith; Hampstead, Benjamin M (2014) RBANS memory indices are related to medial temporal lobe volumetrics in healthy older adults and those with mild cognitive impairment. Arch Clin Neuropsychol 29:322-8
Chopra, Pankaj; Papale, Ligia A; White, Andrew T J et al. (2014) Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice. BMC Genomics 15:131
Lohr, Kelly M; Bernstein, Alison I; Stout, Kristen A et al. (2014) Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci U S A 111:9977-82
Goldstein, Felicia C; Ashley, Angela V; Miller, Eric et al. (2014) Validity of the montreal cognitive assessment as a screen for mild cognitive impairment and dementia in African Americans. J Geriatr Psychiatry Neurol 27:199-203
Kummer, Markus P; Hammerschmidt, Thea; Martinez, Ana et al. (2014) Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J Neurosci 34:8845-54
Göttle, Martin; Prudente, Cecilia N; Fu, Rong et al. (2014) Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease. Ann Neurol 76:95-107
Richardson, Jason R; Roy, Ananya; Shalat, Stuart L et al. (2014) Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71:284-90
Feldman, Eva L; Boulis, Nicholas M; Hur, Junguk et al. (2014) Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 75:363-73
Beecham, Gary W; Hamilton, Kara; Naj, Adam C et al. (2014) Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias. PLoS Genet 10:e1004606

Showing the most recent 10 out of 141 publications