Autosomal dominant Facioscapulohumeral muscular dystrophy (FSHD) is among the most prevalent muscular dystrophies, affecting 1 in 7,500 to 1 in 20,000 individuals. FSHD was formally classified as a major form of muscular dystrophy in 1954, but the pathogenic events leading to the disease have only recently started coming into focus. Several studies now support an FSHD pathogenesis model involving aberrant expression of the DUX4 gene, which encodes a myotoxic transcription factor. The emergence of DUX4 represented a momentum shift in the FSHD field as it provided an important target for therapy design. Indeed, as FSHD is currently untreatable, developing effective FSHD therapies is a critical need in the field. We hypothesized that an FSHD treatment should center on inhibiting toxic DUX4 expression in skeletal muscles. The objective of this proposal is to develop safe and effective prospective FSHD therapies aimed at reducing toxic DUX4 with RNAi and antisense exon skipping approaches in mouse muscles, using therapeutic non-coding RNAs delivered by adeno-associated viral vectors (AAV). We have designed three Specific Aims to accomplish this objective. Upon completion of these Aims, we expect to produce pre-clinical data supporting the translation of new AAV- based RNAi and antisense therapies for FSHD that can be ultimately used for translation toward our goal of clinical application.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Specialized Center (P50)
Project #
5P50AR070604-03
Application #
9545539
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Nationwide Children's Hospital
Department
Type
DUNS #
147212963
City
Columbus
State
OH
Country
United States
Zip Code
43205
Xu, Rui; Jia, Ying; Zygmunt, Deborah A et al. (2018) An Isolated Limb Infusion Method Allows for Broad Distribution of rAAVrh74.MCK.GALGT2 to Leg Skeletal Muscles in the Rhesus Macaque. Mol Ther Methods Clin Dev 10:89-104
Wallace, Lindsay M; Saad, Nizar Y; Pyne, Nettie K et al. (2018) Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD. Mol Ther Methods Clin Dev 8:121-130
Giesige, Carlee R; Wallace, Lindsay M; Heller, Kristin N et al. (2018) AAV-mediated follistatin gene therapy improves functional outcomes in the TIC-DUX4 mouse model of FSHD. JCI Insight 3:
Zygmunt, Deborah A; Crowe, Kelly E; Flanigan, Kevin M et al. (2017) Comparison of Serum rAAV Serotype-Specific Antibodies in Patients with Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, Inclusion Body Myositis, or GNE Myopathy. Hum Gene Ther 28:737-746