Endometrial cancer (EMC) is a malignant disease with high mortality in women. About 50,000 women in USA are annually diagnosed with EMC and ~8200 women die of this disease yearly. Thus, it is urgent to study the key molecular drivers and suppressors of EMC initiation, growth and metastasis for identifying new diagnostic/prognostic markers and therapeutic targets. NCOA6, a coactivator that works with multiple classes of transcription factors (TFs) to potentiate gene expression, appears to be frequently mutated and down- regulated in EMCs. Conditional knockout (KO) of Ncoa6 in the mouse endometrial epithelial (EC) and stromal cells causes estrogen super sensitivity, uterine epithelial hyperplasia and spontaneous EMC development. KO of Ncoa6 only in the endometrial ECs also triggered EMC development. Ncoa6 KO decreases the expression of DUSP6 and PTPRF, two phosphatases that inhibit the MAPK and PI3K/AKT pathways. NCOA6 KO also increases the expression of PRKCD, a PKC kinase that activates the Raf-ERK pathway and simulates cell migration and chemotaxis. We hypothesize that NCOA6 is a novel tumor suppressor of EMC, and it functions through controlling estrogen, MAPK and PI3K/AKT stimulated EC proliferation and carcinogenesis.
In Aim 1, we will define the specific role of NCOA6 in suppressing estrogen-promoted EMC development. Transgenic mice with and without endometrial Ncoa6 KO will be produced to examine how the loss of Ncoa6 function will trigger and promote spontaneous EMC development in the endometrium with and without Pten expression under different estrogen conditions. Transgenic mice with a Ncoa6 mutation that prevents Ncoa6 interact with ER? will also be generated to test whether Ncoa6 relies on the interaction with ER? to suppress estrogen- promoted EMC development.
In Aim 2, we will dissect the basic cellular and molecular mechanisms responsible for NCOA6-mediated repression of EMC. Specifically, we will use both bioinformatic and experimental approaches to identify TFs working with NCOA6 to regulate DUSP6, PRPTF and PRKCD genes. We will also use EMC cell lines and xenograft tumor growth mouse models to define the functional impacts of NCOA6-regulated expression of these 3 genes on the activities of MAPKs and AKT and on the capabilities of EMC cell proliferation, migration, invasion and tumor growth.
In Aim 3, we will define the NCOA6 expression profile and its prognostic value in clinical subtypes of human endometrial tumors. We will semi-quantitatively measure NCOA6 protein expression levels in these specimens and determine the correlation/association relationships between NCOA6 expression levels and tumor grades, tumor stages, disease recurrence time or survival rates. These studies should generate significant impacts by establishing NCOA6 as an EMC suppressor and exploring its working mechanisms. These studies may also suggest NCOA6 as a diagnostic and a prognostic marker for EMC progression and offer a pre-clinical concept of principle to restore the function of NCOA6 or its regulatory pathways as a therapeutic strategy.

Public Health Relevance

Over 50,000 women are annually diagnosed with endometrial cancer (EMC) in USA and there is an urgent need to identify new tumor suppressors and oncogenic drivers for understanding the molecular mechanisms responsible for EMC development and growth. We have found that NCOA6, a coactivator that bolsters specific gene expression, is frequently mutated in EMCs and knockout of NCOA6 in mouse endometrial epithelial cells results in EMC. This project will investigate how NCOA6 suppresses EMC development and growth through controlling estrogen sensitivity and the activities of several cancer-driving kinase pathways through regulating its target gene expression.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA193455-05
Application #
9825521
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Sathyamoorthy, Neeraja
Project Start
2015-12-01
Project End
2021-11-30
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Yang, Ying; Riccio, Paul; Schotsaert, Michael et al. (2018) Spatial-Temporal Lineage Restrictions of Embryonic p63+ Progenitors Establish Distinct Stem Cell Pools in Adult Airways. Dev Cell 44:752-761.e4
Peng, Kesong; Su, Guoqiang; Ji, Jinmeng et al. (2018) Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/?-catenin signaling. J Biol Chem 293:10606-10619
Chen, Wenbo; Zhuo, Minghui; Lu, Xuqiang et al. (2018) SRC-3 protects intestine from DSS-induced colitis by inhibiting inflammation and promoting goblet cell differentiation through enhancement of KLF4 expression. Int J Biol Sci 14:2051-2064
Wang, Ziqing; Zhang, Feng; He, Jingquan et al. (2017) Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells. Dev Cell 43:186-197.e7
Wu, Hongmei; Bi, Jiong; Peng, Yan et al. (2017) Nuclear receptor NR4A1 is a tumor suppressor down-regulated in triple-negative breast cancer. Oncotarget 8:54364-54377
Rohira, Aarti D; Yan, Fei; Wang, Lei et al. (2017) Targeting SRC Coactivators Blocks the Tumor-Initiating Capacity of Cancer Stem-like Cells. Cancer Res 77:4293-4304
Xu, Yixiang; Lee, Dong-Kee; Feng, Zhen et al. (2017) Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proc Natl Acad Sci U S A 114:11494-11499
Chen, Wenbo; Lu, Xuqiang; Chen, Yuan et al. (2017) Steroid Receptor Coactivator 3 Contributes to Host Defense against Enteric Bacteria by Recruiting Neutrophils via Upregulation of CXCL2 Expression. J Immunol 198:1606-1615
Xu, Y; Qin, L; Sun, T et al. (2017) Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene 36:1157-1166
Xi, Ying; Kim, Thomas; Brumwell, Alexis N et al. (2017) Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat Cell Biol 19:904-914

Showing the most recent 10 out of 28 publications