DEVELOPMENT OF IGFBP-3 THERAPY IN MEN WITH PROSTATE CANCER In preliminary data derived with this SPORE grant, we demonstrated interactions of IGFBP-3 with mitochondrial and nuclear apoptosis-related proteins and showed that IGFBP-3's action requires rapid internalization, phosphorylation, and association with the multi-compartmental nuclear receptors RXRa and Nur77 leading to both rapid induction of apoptosis pathways. Particularly, we described that the nucleomitochondrial translocation of Nur77 in response to IGFBP-3 treatment is a key event in the IGFBP-3 cascade and could serve as a biomarker for IGFBP-3 responsiveness. Importantly, we have also shown that the in vivo administration of IGFBP-3 to xenograft bearing mice results in substantial tumor suppression and inhibition of angiogenesis and that the effects of IGFBP-3 in vivo are observed when given as a single therapy, and are enhanced in combination with other agents. Our work has been instrumental in advancing this field to its current state, and in this SPORE renewal we propose to further investigate the role of IGFBP- 3 as a therapy for men with prostate cancer.
Our specific aims are to (1) Develop histopathology assays for IGFBP-3 pathway molecules in prostate cancer and evaluate of their role in determining disease prognosis and their ability to serve as surrogate tissue biomarkers of IGFBP-3 activity on prostate cancer in vivo, (e. g. Nur77 subcellular localization);and to determine, using the SPORE tissue array resource, if baseline intra tumor staining levels of IGFBP-3, Nur77, and RXRa predict the clinical outcome of patients with prostate cancer. (2) Conduct a a Phase 1 b dose response neoadjuvant trial of IGFBP-3 in men with CaP. The primary goals of the study are to assess toxicity and to identify an active dose as defined by molecular induction of apoptosis using assays that include those developed in Aim 1. Secondary goals will be to use genomic and proteomic analyses to identify additional surrogate markers of treatment. (3) Optimize IGFBP-3 treatment of prostate cancer in in vivo mouse models, prior to initiating a larger phase 2 study.
This Aim i s a reverse translation that will build upon the preceding clinical study. Our goals are to identify drugs that synergize with IGFBP-3, such as IGF receptor inhibitors, EGF receptor antagonists and nutritional agents including Pom X. Together, these efforts will serve to promote the development of rational IGFBP-3-related therapies and tools to assess its efficacy in prostate cancer. As the first clinical trials targeting other components of the IGF axis are already underway, we believe that IGFBP-3 will have additional tumor suppressive effects given its IGF-dependent and -independent apoptosis-promoting properties. If successful, our findings may provide new avenues for the treatment of this disease and pave the way towards larger clinical studies involving IGFBP-3.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA092131-10
Application #
8291328
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2013-06-30
Support Year
10
Fiscal Year
2011
Total Cost
$196,183
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Miller, Eric T; Salmasi, Amirali; Reiter, Robert E (2018) Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harb Perspect Med 8:
Navarro, Héctor I; Goldstein, Andrew S (2018) HoxB13 mediates AR-V7 activity in prostate cancer. Proc Natl Acad Sci U S A 115:6528-6529
Mitra, Mithun; Ho, Linda D; Coller, Hilary A (2018) An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. Methods Mol Biol 1686:27-47
Li, Jiayun; Speier, William; Ho, King Chung et al. (2018) An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Comput Med Imaging Graph 69:125-133
Kang, Jung J; Reiter, Robert E; Kummer, Nicolas et al. (2018) Wrong to be Right: Margin Laterality is an Independent Predictor of Biochemical Failure After Radical Prostatectomy. Am J Clin Oncol 41:1-5
Lee, Ha Neul; Mitra, Mithun; Bosompra, Oye et al. (2018) RECK isoforms have opposing effects on cell migration. Mol Biol Cell 29:1825-1838
Aggarwal, Rahul; Huang, Jiaoti; Alumkal, Joshi J et al. (2018) Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol 36:2492-2503
Cheng, Larry C; Li, Zhen; Graeber, Thomas G et al. (2018) Phosphopeptide Enrichment Coupled with Label-free Quantitative Mass Spectrometry to Investigate the Phosphoproteome in Prostate Cancer. J Vis Exp :
Park, Jung Wook; Lee, John K; Sheu, Katherine M et al. (2018) Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362:91-95
Tan, Nelly; Shen, Luyao; Khoshnoodi, Pooria et al. (2018) Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology. J Urol 199:1218-1223

Showing the most recent 10 out of 339 publications