Introduction. The Chemistry/Radiochemistry Specialized Resource (SRI) ofthe ICMlC@Stanford is a unique facility, designed to be an integral component and important addition to our existing Molecular Imaging Program at Stanford (MIPS) f The primary mission of this ICMIC@Stanford Specialized Resource is to provide expertise in design, synthesis, and production of positron emission tomography (PET), single photon emission computed tomography (SPECT), and non-radioactive imaging probes (i.e., Near-Infrared Fluorescence (NIRF), Magnetic Resonance) for ICMIC@Stanford investigators. The Molecular Imaging Program at Stanford (MIPS) is an interdisciplinary research program founded in 2003 within the School of Medicine and directed by Drs. Sanjiv Sam Gambhir and Christopher Contag. The Program is integrally linked with the Bio-X Program in interdisciplinary biosciences ( and bnngs together scientists from the Schools of Engineering, Medicine, and Humanities &Sciences at Stanford. MIPS has a radiopharmaceutical facility, a small animal imaging facility (, and clinical imaging equipment in the Department of Radiology including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography combined with CT (PET/CT), and single photon emission computed tomography (SPECT). The Division of Nuclear Medicine ( is also actively linked to MIPS. In addition to the nearby existing chemistry/radiochemistry resources located within the Clark, Lucas, and Edwards buildings, a GE PETtrace (16.5 MeV) cyclotron was moved into the Radiochemistry Core Facility (RCF) in April 2004. In August 2005, MIPS opened the doors to the RCF and began setting up and validating all the new instruments and equipment including the cyclotron. The cyclotron routinely provides [ [18] F]fluoride (fluorine-18: ti/2 = 109,8 min), f ?F]fluorine gas (fluorine-18: tv2 = 109.8 min), [^^Cjcarbon dioxide (carbon-11: ti/2 = 20.4 min), and f ^Njammonia (nitrogen-13: ti/2 = 9.97 min) to meet most of the current PET radiochemistry needs in MIPS. Although our cyclotron can produce oxygen-15 (ti/2 = 2.04 min), routine production does not occur due to the long distance between the facility and the PET scanners, lndium-111 (ti/2 = 2.8 d) and yttrium- 90 (ti/2 = 64 h) are purchased directly from Perkin-Elmer. Gallium-68 (ti/2 = 68 min) is milked from our Ge-68/Ga-68 generator that was purchased from Cyclotron Instruments (Mainz, Germany). Lutetium-177 is acquired from the University of Missouri Research Reactor Center (see Letter of Support from Cathy Cutler at the end of this section). We currently obtain copper-64 (ti/2= 12.8 h), yttrium-86 (ti/2= 14.6 h), and zirconium-89 from the University of Wisconsin-Madison (see Letter of Support from R. Jerome Nickles), and iodine-124 (ti/2= 4.2 day) from RITVERC GmbH (Moscow, Russia). We are exploring possibilities of installing solid targets and associated processing apparatuses for in-house production of these radioisotopes.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Lee, Alex G; Nechvatal, Jordan M; Shen, Bin et al. (2016) Striatal dopamine D2/3 receptor regulation by stress inoculation in squirrel monkeys. Neurobiol Stress 3:68-73
Carroll, V N; Truillet, C; Shen, B et al. (2016) [(11)C]Ascorbic and [(11)C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun (Camb) 52:4888-90
Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren et al. (2016) Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction. Radiology 280:815-25
Zhou, Zijian; Song, Jibin; Nie, Liming et al. (2016) Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 45:6597-6626
Neumann, Kiel D; Qin, Linlin; Vāvere, Amy L et al. (2016) Efficient automated syntheses of high specific activity 6-[18F]fluorodopamine using a diaryliodonium salt precursor. J Labelled Comp Radiopharm 59:30-4
Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan et al. (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986-994
Sun, Ziyan; Cheng, Kai; Wu, Fengyu et al. (2016) Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging. Nanoscale 8:19644-19653
Zhang, Ruiping; Cheng, Kai; Antaris, Alexander L et al. (2016) Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials 103:265-77
Van de Sompel, Dominique; Sasportas, Laura S; Jokerst, Jesse V et al. (2016) Comparison of Deconvolution Filters for Photoacoustic Tomography. PLoS One 11:e0152597
Li, Yulin; Deutzmann, Anja; Choi, Peter S et al. (2016) BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia. Oncotarget 7:26926-34

Showing the most recent 10 out of 404 publications