Research conducted over the past 50 years has provided considerable knowledge regarding the chemical constituents of smokeless tobacco products, smoked tobacco products and cigarette smoke. Meanwhile, there is a paucity of data regarding the microbial constituents of tobacco and smoke, and their associated adverse health effects. Yet, tobacco microbial constituents may play significant roles in the development of both infectious and chronic diseases among tobacco users. To address these knowledge gaps, the longterm objective of this proposed project is to harness the power of next-generation sequencing technologies to increase our understanding of the microbial constituents of conventional, new and emerging tobacco products, and greatly improve our understanding of microbial-related health risks among tobacco users.
The specific aims of the proposal are as follows: 1) To explore the bacterial microbiome of conventional, new and manipulated smoked and smokeless tobacco products and smoke, and examine the role of specific genera in tobacco-specific N-nitrosamine formation;2) To provide novel, baseline data on the composition of the oral microbiome and its associated expressed activities in smokers and smokeless tobacco users compared with that of non-users;and 3) To characterize the transient changes-bacterial community composition and expressed metabolic activities-in the oral microbiome after single-use of new and manipulated smoked and smokeless tobacco products. To accomplish these aims, this study will employ an innovative, polyphasic approach involving the application of next-generation sequencing methods in: 1) time course experiments with conventional, new and manipulated tobacco products;2) a longitudinal study of tobacco users and nonusers;and 3) cross-over trials of tobacco users testing new or manipulated tobacco products. This approach will generate a rich, novel and valuable data source that can be immediately utilized by FDA as it implements the Family Smoking Prevention and Tobacco Control Act and seeks to improve tobacco regulation for the benefit of public health. Specifically, these data could inform potential new microbial-related tobacco regulations that have never before been considered by U.S. governmental regulators.

Public Health Relevance

The data generated in this innovative project will improve scientific knowledge of the role that tobacco bacterial communities may play in the development of both acute infectious diseases and chronic diseases among tobacco users. This knowledge will fill a critical gap in the field of tobacco regulatory science which has yet to address the possible public health implications associated with microbial constituents of tobacco.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA180523-02
Application #
8745010
Study Section
Special Emphasis Panel (ZRG1-BDCN-A)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
2
Fiscal Year
2014
Total Cost
$575,440
Indirect Cost
$97,739
Name
University of Maryland College Park
Department
Type
DUNS #
790934285
City
College Park
State
MD
Country
United States
Zip Code
20742
Chopyk, Jessica; Chattopadhyay, Suhana; Kulkarni, Prachi et al. (2017) Mentholation affects the cigarette microbiota by selecting for bacteria resistant to harsh environmental conditions and selecting against potential bacterial pathogens. Microbiome 5:22
Kim, Hyoshin; Davis, Andrew H; Dohack, Jaime L et al. (2017) E-Cigarettes Use Behavior and Experience of Adults: Qualitative Research Findings to Inform E-Cigarette Use Measure Development. Nicotine Tob Res 19:190-196
Weaver, Scott R; Kim, Hyoshin; Glasser, Allison M et al. (2017) Establishing consensus on survey measures for electronic nicotine and non-nicotine delivery system use: Current challenges and considerations for researchers. Addict Behav :
Smyth, Eoghan M; Kulkarni, Prachi; Claye, Emma et al. (2017) Smokeless tobacco products harbor diverse bacterial microbiota that differ across products and brands. Appl Microbiol Biotechnol 101:5391-5403
Chopyk, Jessica; Chattopadhyay, Suhana; Kulkarni, Prachi et al. (2017) Temporal Variations in Cigarette Tobacco Bacterial Community Composition and Tobacco-Specific Nitrosamine Content Are Influenced by Brand and Storage Conditions. Front Microbiol 8:358
Kim, Hyoshin; Brinkman, Marielle C; Sharma, Eva et al. (2016) Variability in Puff Topography and Exhaled CO in Waterpipe Tobacco Smoking. Tob Regul Sci 2:301-308
Kim, Hyoshin; Lim, Juyun; Buehler, Stephanie S et al. (2016) Role of sweet and other flavours in liking and disliking of electronic cigarettes. Tob Control 25:ii55-ii61
Crenshaw, Michael D; Tefft, Margaret E; Buehler, Stephanie S et al. (2016) Determination of nicotine, glycerol, propylene glycol and water in electronic cigarette fluids using quantitative (1) H NMR. Magn Reson Chem 54:901-904
Brinkman, Marielle C; Kim, Hyoshin; Gordon, Sydney M et al. (2016) Design and Validation of a Research-Grade Waterpipe Equipped With Puff Topography Analyzer. Nicotine Tob Res 18:785-93
Klupinski, Theodore P; Strozier, Erich D; Friedenberg, David A et al. (2016) Identification of New and Distinctive Exposures from Little Cigars. Chem Res Toxicol 29:162-8

Showing the most recent 10 out of 12 publications