Astrocytes extend highly branched processes that ensheath excitatory synapses, providing a barrier to diffusion and the means to localize transporters near sites of release. This "tripartite" structure, consisting of presynaptic and postsynaptic elements and associated astrocyte processes, limits interactions between densely packed synapses, and allows astrocytes to modulate synaptic signaling through the release of neuroactive molecules (gliotransmitters) in response to a rise in intracellular Ca2-H. Despite the many in vitro studies that have implicated astrocytes in synaptic plasticity, our knowledge about their roles in synaptic modulation in vivo is limited, in part, due to difficulties associated with monitoring and manipulating astrocyte activity in the intact CNS. Due to its uniform structure and accessibility, the cerebellar cortex offers many advantages for analyzing neuron-astrocyte interactions. This proposal will use in vivo two photon imaging, in combination with newly developed transgenic mice that allow cell-specific expression of genetically encoded Ca2-H indicators, to monitor Bergmann glia activity in response to voluntary movement. The mechanisms responsible for initiating these events, such as activation of Ca2+ permeable AMPA receptors, will be evaluated by selective disruption of AMPA receptor signaling in Bergmann glia. A further goal of these studies is to investigate the involvement of the Ca2-H release-activated Ca2-H (CRAC) channel complex in generating these transients, by genetically deleting Orail and STIM1 from Bergmann glia. The effects of disruption of this robust form of signaling on motor coordination will be evaluated to assess the broader consequence of Ca2+ signaling in these glial cells. These studies will serve as a crucial template with which to understand the role of astrocytes in modulating excitatory synapses in other brain regions relevant for mental health.

Public Health Relevance

Astroglial cells in the cerebellar cortex exhibit widespread activity in response to voluntary movement; however, the role of this activity is unknown. This proposal will determine how this activity is initiated and how it influences the ability of the cerebellum to coordinate movements. Identification of new pathways for modulating neural activity in the cerebellum could lead to new approaches for treating movement disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH100024-02
Application #
8664442
Study Section
Special Emphasis Panel (ZMH1-ERB-L)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
2
Fiscal Year
2014
Total Cost
$310,551
Indirect Cost
$118,853
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Zhang-Hooks, YingXin; Agarwal, Amit; Mishina, Masayoshi et al. (2016) NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea. Neuron 89:337-50
Otsu, Yo; Couchman, Kiri; Lyons, Declan G et al. (2015) Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci 18:210-8
Mariga, Abigail; Glaser, Juliane; Mathias, Leo et al. (2015) Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp. Cell Rep 13:1747-56
Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky et al. (2015) Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell 163:1348-59
Zhang, Yong; Cudmore, Robert H; Lin, Da-Ting et al. (2015) Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo. Nat Neurosci 18:402-7
Nimmerjahn, Axel; Bergles, Dwight E (2015) Large-scale recording of astrocyte activity. Curr Opin Neurobiol 32:95-106
Rosa, Juliana M; Bos, Rémi; Sack, Georgeann S et al. (2015) Neuron-glia signaling in developing retina mediated by neurotransmitter spillover. Elife 4:
Rylkova, Daria; Crank, Aidan R; Linden, David J (2015) Chronic In Vivo Imaging of Ponto-Cerebellar Mossy Fibers Reveals Morphological Stability during Whisker Sensory Manipulation in the Adult Rat. eNeuro 2:
Placone, Amanda L; McGuiggan, Patricia M; Bergles, Dwight E et al. (2015) Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials 42:134-43
Pelkey, Kenneth A; Barksdale, Elizabeth; Craig, Michael T et al. (2015) Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 85:1257-72

Showing the most recent 10 out of 13 publications