Astrocytes extend highly branched processes that ensheath excitatory synapses, providing a barrier to diffusion and the means to localize transporters near sites of release. This tripartite structure, consisting of presynaptic and postsynaptic elements and associated astrocyte processes, limits interactions between densely packed synapses, and allows astrocytes to modulate synaptic signaling through the release of neuroactive molecules (gliotransmitters) in response to a rise in intracellular Ca2-H. Despite the many in vitro studies that have implicated astrocytes in synaptic plasticity, our knowledge about their roles in synaptic modulation in vivo is limited, in part, due to difficulties associated with monitoring and manipulating astrocyte activity in the intact CNS. Due to its uniform structure and accessibility, the cerebellar cortex offers many advantages for analyzing neuron-astrocyte interactions. This proposal will use in vivo two photon imaging, in combination with newly developed transgenic mice that allow cell-specific expression of genetically encoded Ca2-H indicators, to monitor Bergmann glia activity in response to voluntary movement. The mechanisms responsible for initiating these events, such as activation of Ca2+ permeable AMPA receptors, will be evaluated by selective disruption of AMPA receptor signaling in Bergmann glia. A further goal of these studies is to investigate the involvement of the Ca2-H release-activated Ca2-H (CRAC) channel complex in generating these transients, by genetically deleting Orail and STIM1 from Bergmann glia. The effects of disruption of this robust form of signaling on motor coordination will be evaluated to assess the broader consequence of Ca2+ signaling in these glial cells. These studies will serve as a crucial template with which to understand the role of astrocytes in modulating excitatory synapses in other brain regions relevant for mental health.

Public Health Relevance

Astroglial cells in the cerebellar cortex exhibit widespread activity in response to voluntary movement; however, the role of this activity is unknown. This proposal will determine how this activity is initiated and how it influences the ability of the cerebellum to coordinate movements. Identification of new pathways for modulating neural activity in the cerebellum could lead to new approaches for treating movement disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH100024-05
Application #
9249983
Study Section
Special Emphasis Panel (ZMH1-ERB-L)
Project Start
Project End
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
5
Fiscal Year
2017
Total Cost
$274,713
Indirect Cost
$105,137
Name
Johns Hopkins University
Department
Type
Domestic Higher Education
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Heo, Seok; Diering, Graham H; Na, Chan Hyun et al. (2018) Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 115:E3827-E3836
Piard, Juliette; Hu, Jia-Hua; Campeau, Philippe M et al. (2018) FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis. Hum Mol Genet 27:589-600
Diering, Graham H; Huganir, Richard L (2018) The AMPA Receptor Code of Synaptic Plasticity. Neuron 100:314-329
Xiao, Mei-Fang; Xu, Desheng; Craig, Michael T et al. (2017) NPTX2 and cognitive dysfunction in Alzheimer's Disease. Elife 6:
Ryu, Changhyeon; Jang, Dong Cheol; Jung, Dayoon et al. (2017) STIM1 Regulates Somatic Ca2+ Signals and Intrinsic Firing Properties of Cerebellar Purkinje Neurons. J Neurosci 37:8876-8894
Akassoglou, Katerina; Merlini, Mario; Rafalski, Victoria A et al. (2017) In Vivo Imaging of CNS Injury and Disease. J Neurosci 37:10808-10816
Li, Ang; Liang, Wenxuan; Guan, Honghua et al. (2017) Focus scanning with feedback-control for fiber-optic nonlinear endomicroscopy. Biomed Opt Express 8:2519-2527
Wang, Qiang; Chiu, Shu-Ling; Koropouli, Eleftheria et al. (2017) Neuropilin-2/PlexinA3 Receptors Associate with GluA1 and Mediate Sema3F-Dependent Homeostatic Scaling in Cortical Neurons. Neuron 96:1084-1098.e7
Roth, Richard H; Zhang, Yong; Huganir, Richard L (2017) Dynamic imaging of AMPA receptor trafficking in vitro and in vivo. Curr Opin Neurobiol 45:51-58
Diering, Graham H; Nirujogi, Raja S; Roth, Richard H et al. (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355:511-515

Showing the most recent 10 out of 27 publications