The purpose of the behavioral Core is to evaluate the functional status of neural circuitry following traumatic brain injury in rats and mice, by quantitatively assessing sensorimotor and cognitive behavioral endpoints including seizures. Paradigms are designed to assess neurobehavioral deficits associated with fluid percussive TBI in rats, and controlled cortical impact in mice, and to evaluate, when possible, the relation between neurobehavioral endpoints and neuropathological, and neurophysiological markers. The tests of sensorimotor integration and cognition used in the core are have been demonstrated to be sensitive to insults produced by these TBI models, which, at moderate to severe levels of injury severity, produce overt pathology in the parietotemporal cortex, hippocampus, thalamus, and white matter.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS030291-19
Application #
8376068
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
19
Fiscal Year
2012
Total Cost
$152,926
Indirect Cost
$52,974
Name
University of Miami School of Medicine
Department
Type
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
Dietrich, W Dalton; Bramlett, Helen M (2016) Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation. Brain Res 1640:94-103
Assis-Nascimento, Poincyane; Umland, Oliver; Cepero, Maria L et al. (2016) A flow cytometric approach to analyzing mature and progenitor endothelial cells following traumatic brain injury. J Neurosci Methods 263:57-67
Bramlett, Helen M; Dietrich, W Dalton (2015) Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J Neurotrauma 32:1834-48
Luo, Tianfei; Roman, Philip; Liu, Chunli et al. (2015) Upregulation of the GEF-H1 pathway after transient cerebral ischemia. Exp Neurol 263:306-13
Sun, Xin; Crawford, Robert; Liu, Chunli et al. (2015) Development-dependent regulation of molecular chaperones after hypoxia-ischemia. Neurobiol Dis 82:123-31
Blaya, Meghan O; Tsoulfas, Pantelis; Bramlett, Helen M et al. (2015) Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp Neurol 264:67-81
Dixon, Kirsty J; Theus, Michelle H; Nelersa, Claudiu M et al. (2015) Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury. J Neurotrauma 32:753-64
Park, Yujung; Liu, Chunli; Luo, Tianfei et al. (2015) Chaperone-Mediated Autophagy after Traumatic Brain Injury. J Neurotrauma 32:1449-57
Theus, M H; Ricard, J; Glass, S J et al. (2014) EphrinB3 blocks EphB3 dependence receptor functions to prevent cell death following traumatic brain injury. Cell Death Dis 5:e1207
Zhang, Fan; Guo, Ailan; Liu, Chunli et al. (2013) Phosphorylation and assembly of glutamate receptors after brain ischemia. Stroke 44:170-6

Showing the most recent 10 out of 166 publications