This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The incidence of preventable metabolic diseases in children has increased markedly over the past 2 decades. Currently, there is little information to determine the underlying causes or whether therapeutic or dietary interventions might be successful at preventing or reducing metabolic health risks in children from obese pregnancy. These studies use a nonhuman primate (NHP) model to investigate the impact of poor maternal metabolic health and diet on the development of metabolic systems in the developing fetus, as well as its postpartum growth, development, and susceptibility to diet induced obesity and diabetes. For these studies, breeding NHPs are chronically maintained on a diet high in fats and calories (HFD). This proposal focuses on the placenta, pancreas, liver and muscle that are critical for normal regulation of body weight and glucose homeostasis. The hypothesis is that abnormalities beginning with placental dysfunction directly contribute to life-long risk for metabolic disease. Furthermore, it is hypothesized that supplementation with agents that reduce oxidative stress and inflammation will prevent or attenuate the structural, metabolic, and molecular disturbances observed during pregnancy while on a HFD. We are also determining if dietary supplements with either fish oil or resveratrol, to prevent inflammation, oxidative stress, will provide similar protection. These studies will identify the risks and complications in the developing fetus associated with poor maternal metabolic health and diet. Furthermore, these studies will test dietary supplements/interventions that can be quickly translated to the clinic that may help prevent or reduce metabolic diseases in children.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000163-52
Application #
8357860
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
52
Fiscal Year
2011
Total Cost
$109,117
Indirect Cost
Name
Oregon Health and Science University
Department
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Su, Weiping; Foster, Scott C; Xing, Rubing et al. (2017) CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J Biol Chem 292:4434-4445
Lima, Fernanda B; Leite, Cristiane M; Bethea, Cynthia L et al. (2017) Progesterone increased ?-endorphin innervation of the locus coeruleus, but ovarian steroids had no effect on noradrenergic neurodegeneration. Brain Res 1663:1-8
Slayden, Ov Daniel (2016) Translational In Vivo Models for Women's Health: The Nonhuman Primate Endometrium--A Predictive Model for Assessing Steroid Receptor Modulators. Handb Exp Pharmacol 232:191-202
Chadderdon, S M; Belcik, J T; Bader, L et al. (2016) Vasoconstrictor eicosanoids and impaired microvascular function in inactive and insulin-resistant primates. Int J Obes (Lond) 40:1600-1603
Dufour, Brett D; McBride, Jodi L (2016) Intravascular AAV9 Administration for Delivering RNA Silencing Constructs to the CNS and Periphery. Methods Mol Biol 1364:261-75
Meyer, Thomas J; Held, Ulrike; Nevonen, Kimberly A et al. (2016) The Flow of the Gibbon LAVA Element Is Facilitated by the LINE-1 Retrotransposition Machinery. Genome Biol Evol 8:3209-3225
Pleil, Kristen E; Helms, Christa M; Sobus, Jon R et al. (2016) Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST. Addict Biol 21:1151-1167
Mohiuddin, Muhammad M; Singh, Avneesh K; Corcoran, Philip C et al. (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138
Sylwester, Andrew; Nambiar, Kate Z; Caserta, Stefano et al. (2016) A new perspective of the structural complexity of HCMV-specific T-cell responses. Mech Ageing Dev 158:14-22
Laws, L H; Parker, C E; Cherala, G et al. (2016) Inflammation Causes Resistance to Anti-CD20-Mediated B Cell Depletion. Am J Transplant 16:3139-3149

Showing the most recent 10 out of 481 publications