This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Pathogenesis of Epstein-Barr Virus Infection The overall goal of our research is to better understand the pathogenesis of Epstein-Barr virus (EBV) infection in order to develop therapies that can reduce, control, or prevent EBV-associated diseases. EBNA-1 is an EBV protein important for the maintenance of the virus episome. EBNA-1 is expressed in all phases of EBV infection, is one of only a few viral genes expressed by infected B cells circulating in the blood of persistently infected hosts, and is the gene most consistently expressed in EBV associated malignancies. EBNA-1 specific cytotoxic T cells are present in persistently EBV infected individuals, but these T cells are unable to effectively kill EBV infected cells due in part to an inhibitory effect of the EBNA-1 glycine-alanine repeat (GAR) domain that prevents appropriate processing and presentation of EBNA-1 peptides to T cells. This application focuses on the importance of EBNA-1 for persistent EBV infection, the importance of EBNA-1 immune evasion for persistent infection, and the possibility of manipulating the EBNA-1 immune response as a therapeutic tool against EBV-associated malignancies. AIDS related.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Primate Research Center Grants (P51)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Veterinary Sciences
Schools of Medicine
United States
Zip Code
Isakova, Irina A; Baker, Kate C; Dufour, Jason et al. (2016) Mesenchymal Stem Cells Yield Transient Improvements in Motor Function in an Infant Rhesus Macaque With Severe Early-Onset Krabbe Disease. Stem Cells Transl Med :
Williams, Kenneth; Lackner, Andrew; Mallard, Jaclyn (2016) Non-human primate models of SIV infection and CNS neuropathology. Curr Opin Virol 19:92-8
Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja et al. (2016) High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques. J Immunol 197:3586-3596
Fischer, Bradford D; Platt, Donna M; Rallapalli, Sundari K et al. (2016) Antagonism of triazolam self-administration in rhesus monkeys responding under a progressive-ratio schedule: In vivo apparent pA2 analysis. Drug Alcohol Depend 158:22-9
Yasuda, Koji; Oh, Keunyoung; Ren, Boyu et al. (2015) Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:385-91
Walker, Joshua A; Beck, Graham A; Campbell, Jennifer H et al. (2015) Anti-α4 Integrin Antibody Blocks Monocyte/Macrophage Traffic to the Heart and Decreases Cardiac Pathology in a SIV Infection Model of AIDS. J Am Heart Assoc 4:
Adnan, Sama; Colantonio, Arnaud D; Yu, Yi et al. (2015) CD8 T cell response maturation defined by anentropic specificity and repertoire depth correlates with SIVΔnef-induced protection. PLoS Pathog 11:e1004633
Gardner, Matthew R; Kattenhorn, Lisa M; Kondur, Hema R et al. (2015) AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519:87-91
Wang, Zichun; Metcalf, Benjamin; Kasheta, Melissa et al. (2015) Characterization of MHC class I alleles in sooty mangabeys as a tool for evaluating cellular immunity in natural hosts of SIV infection. Immunogenetics 67:447-61
Hallett, Penelope J; Deleidi, Michela; Astradsson, Arnar et al. (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease. Cell Stem Cell 16:269-74

Showing the most recent 10 out of 328 publications