The urinary tract is a complicated epithelial-lined tube with an opening to the body surface, making it susceptible to infection by exogenous organisms. Indeed, urinary tract infection is one of the most common bacterial infections of humans and the most common kidney and urologic disease in the US. The most common uropathogen, Escherichia coli, can cause acute cystitis or pyelonephritis in the uncomplicated urinary tract. On the other hand, in patients with complicated urinary tracts, ones in which normal urine flow are blocked by structural abnormality or urethral catheters, species such as Proteus mirabilis predominate. Both E. coli and P. mirabilis are members of the Enterobacteriaceae, are motile, and produce a battery of fimbriae by which they mediate adherence to the uroepithelium. The abilities to swim using flagella and to adhere by certain fimbriae have been demonstrated to be virulence traits for both organisms. However the actions of the two organelles have opposite functions. We reason that there is a time to swim and a time to adhere. We also provide preliminary data that E. coli and P. mirabilis possess defined regulatory pathways by which they transform from the motile to the adherent form and vice versa. As well, other regulatory mechanisms have been uncovered. In this proposal, we will test the central hypothesis that uropathogenic E. coli and P. mirabilis strictly regulate the balance between motility and adherence. We will test this hypothesis by carrying out the following specific aims: 1) Elucidate the prevalence, function, structure, and contribution to virulence of fimbrial operon-encoded repressors of motility: PapX and MrpJ;and 2) Define the regulatory pathways for proteins that mediate reciprocal regulation between fimbriation and motility. Clearly the ability to colonize mucosal surfaces in the respiratory, intestinal, and genital tracts also require the orchestrated synthesis of fimbriae for adherence and flagella for motility.

Public Health Relevance

The urinary tract is susceptible to infection by bacteria. Indeed, urinary tract infection is one of the most common bacterial infections of humans. The most common bacterium that infects the urinary tract of healthy individuals is Escherichia coli. On the other hand, in patients who have urinary catheters to help with urination, a bacterium called Proteus mirabilis often infects the bladder and causes stones to form there. Both of these bacteria can either stick to the surface of the bladder or swim up to the kidneys. But they should not do both. This study will determine how these bacteria decide to stick or decide to swim. Understanding how these bacteria cause urinary tract infection will help us to develop antimicrobial agents and vaccines to combat these infections that each year costs the United States nearly 3 billion dollars to treat.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Urologic and Kidney Development and Genitourinary Diseases Study Section (UKGD)
Program Officer
Korpela, Jukka K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Armbruster, Chelsie E; Hodges, Steven A; Smith, Sara N et al. (2014) Arginine promotes Proteus mirabilis motility and fitness by contributing to conservation of the proton gradient and proton motive force. Microbiologyopen 3:630-41
Armbruster, Chelsie E; Smith, Sara N; Yep, Alejandra et al. (2014) Increased incidence of urolithiasis and bacteremia during Proteus mirabilis and Providencia stuartii coinfection due to synergistic induction of urease activity. J Infect Dis 209:1524-32
Engstrom, Michael D; Alteri, Christopher J; Mobley, Harry L T (2014) A conserved PapB family member, TosR, regulates expression of the uropathogenic Escherichia coli RTX nonfimbrial adhesin TosA while conserved LuxR family members TosE and TosF suppress motility. Infect Immun 82:3644-56
Brumbaugh, Ariel R; Smith, Sara N; Mobley, Harry L T (2013) Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect Immun 81:3309-16
Armbruster, Chelsie E; Hodges, Steven A; Mobley, Harry L T (2013) Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess L-glutamine. J Bacteriol 195:1305-19
Subashchandrabose, Sargurunathan; Hazen, Tracy H; Rasko, David A et al. (2013) Draft genome sequences of five recent human uropathogenic Escherichia coli isolates. Pathog Dis :
Spurbeck, Rachel R; Alteri, Christopher J; Himpsl, Stephanie D et al. (2013) The multifunctional protein YdiV represses P fimbria-mediated adherence in uropathogenic Escherichia coli. J Bacteriol 195:3156-64
Alteri, Christopher J; Himpsl, Stephanie D; Pickens, Shannon R et al. (2013) Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathog 9:e1003608
Alteri, Christopher J; Mobley, Harry L T (2012) Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15:3-9
Cooper, Lauren A; Simmons, Lyle A; Mobley, Harry L T (2012) Involvement of mismatch repair in the reciprocal control of motility and adherence of uropathogenic Escherichia coli. Infect Immun 80:1969-79

Showing the most recent 10 out of 39 publications