African trypanosomiasis impacts both human and animal health in Sub-Saharan Africa. Uganda is the only country that has both forms of the human African trypanosomiasis (HAT): Trypanosoma brucei gambiense (Tbg) in the north-west and Trypanosoma brucei rhodesiense (Tbr) in the south-east. Tbr cases have been migrating from their traditional foci in the south to central Uganda, with the two disease belts feared to merge in northern Uganda. This interdisciplinary project focuses on northern Uganda to understand HAT transmission dynamics and risk of Tbr and Tbg disease merger. Our findings will provide fundamental knowledge on the role of the vector in HAT epidemiology, and provide practical information to inform the development and implementation of effective control strategies. We propose five integrated aims to: 1) Analyze the genomic variation in Gff, its associated microbiome and parasite (Trypanosoma) using a multispecies SNP chip, 2) Characterize the expression and genetic variations of the Trypanosoma-resistance candidate genes in different Gff population groups, 3) Discover gene-environment associations and impacts of climate change on Ugandan Gff, 4) Understand genetic as well as microbiome contributions for differentiation of Gff populations and 5) Assess the impact of Gff dispersal on the effectiveness and cost-effectiveness of vector control for reducing trypanosomiasis burden. Our studies will produce 1) fundamental information on host-parasite interactions that will predict the potential risk of disease merger and its epidemiological consequences, 2) suitability maps for Gff based on genetic and environmental data to better plan and operate vector control activities, 3) candidate genes on parasite-resistance, environmental adaptations that can be used in downstream genetic control methods and 4) predictions on the most effective and cost-effective control methods for HAT.

Public Health Relevance

Uganda is the only country that has both forms of the human African trypanosomiasis (HAT): Trypanosoma brucei gambiense (Tbg) in the north-west and Trypanosoma brucei rhodesiense (Tbr) in the south-east. The two disease belts feared to merge in northern Uganda, which would exacerbate the public health HAT burden. This interdisciplinary study will provide knowledge on the vector population dynamics and vector-parasite interactions, on the genetic and environmental parameters most fundamental to disease spread, and on the most appropriate and cost-effective methods for control.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Vector Biology Study Section (VB)
Program Officer
Costero-Saint Denis, Adriana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Public Health & Prev Medicine
Schools of Medicine
New Haven
United States
Zip Code
Opiro, Robert; Saarman, Norah P; Echodu, Richard et al. (2017) Genetic diversity and population structure of the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae) in Northern Uganda: Implications for vector control. PLoS Negl Trop Dis 11:e0005485
Kamidi, Christine M; Saarman, Norah P; Dion, Kirstin et al. (2017) Multiple evolutionary origins of Trypanosoma evansi in Kenya. PLoS Negl Trop Dis 11:e0005895
Richardson, Joshua Brian; Lee, Kuang-Yao; Mireji, Paul et al. (2017) Genomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification. PLoS Negl Trop Dis 11:e0005949
Manangwa, Oliver; Nkwengulila, Gamba; Ouma, Johnson O et al. (2017) Genetic diversity of Glossina fuscipes fuscipes along the shores of Lake Victoria in Tanzania and Kenya: implications for management. Parasit Vectors 10:268
Sistrom, Mark; Evans, Benjamin; Benoit, Joshua et al. (2016) De Novo Genome Assembly Shows Genome Wide Similarity between Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS One 11:e0147660
Richardson, Joshua B; Evans, Benjamin; Pyana, Patient P et al. (2016) Whole genome sequencing shows sleeping sickness relapse is due to parasite regrowth and not reinfection. Evol Appl 9:381-93
Opiro, Robert; Saarman, Norah P; Echodu, Richard et al. (2016) Evidence of temporal stability in allelic and mitochondrial haplotype diversity in populations of Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda. Parasit Vectors 9:258
Gloria-Soria, Andrea; Dunn, W Augustine; Telleria, Erich L et al. (2016) Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda. G3 (Bethesda) 6:1573-84
Aksoy, Emre; Vigneron, Aurélien; Bing, XiaoLi et al. (2016) Mammalian African trypanosome VSG coat enhances tsetse's vector competence. Proc Natl Acad Sci U S A 113:6961-6
Gilbert, Jennifer A; Medlock, Jan; Townsend, Jeffrey P et al. (2016) Determinants of Human African Trypanosomiasis Elimination via Paratransgenesis. PLoS Negl Trop Dis 10:e0004465

Showing the most recent 10 out of 43 publications