Severe systemic inflammation (SSI) with multiorgan dysfunction from sepsis or non infectious agents is a disease with major mortality and morbidity. SSI is associated with gene-specific reprogramming of innate immunity leukocyte responses to Toll-like receptor (TLR)-4dependent signaling, which epigenetically represses transcription of a set of acute proinflammatory genes, while activating other sets of genes that generate anti- inflammatory mediators and anti-microbial peptides. This gene reprogramming is important in at least two ways. Its presence indicates repressed innate and adaptive immunity and its reversal correlates with improved outcomes in SSI in humans and animals. We have reported that the epigenetic silencing signature requires Toll-like receptor 4 (TLR4) induction of NF-kappa B factor RelB that disrupts p65 promoter binding, directs histone H3K9 di-methylation by G9a to provide a binding site of heterochromatin protein 1 (HP1), which then links to DNA CpG methylation responses and chromatin structural proteins. This RelB-dependent process alters the state of responsive euchromatin to produce silenced facultative heterochromatin. The general objective of our research is to define mechanisms that shift chromatin between the euchromatin and facultative heterochromatin states. This proposal tests the hypothesis that G9a and RelB provide a bond for both assembling and disassembling facultative heterochromatin during SSI by its ability to directly bind G9a, which couples to histone and DNA modifiers and structural chromatin proteins like linker histone H1 and high mobility group box 1 (HMGB1) proteins.
Aim 1 will test for direct interaction and feedback between G9a and RelB to initiate and reverse gene-specific change from active euchromatin to facultative heterochromatin at the proximal promoters of acute proinflammatory genes TNFa and IL-1b.
Aim 2 will test whether the linker histone H1, in concert with HMGB1, sustains heterochromatin assembly and transcription silencing by re-positioning nucleosomes and maintaining RelB and G9a binding at promoter sequences of TNFa and IL-1b.
Aim 3 will use human peripheral blood leukocytes to extend the gene-specific reprogramming paradigm to human SSI. Our experimental approaches will employ genetic and biochemical analyses.]

Public Health Relevance

Severe systemic inflammation (SSI) from sepsis or trauma has substantial public health impact through its high mortality and sustained morbidity. This translational research should define novel mechanisms responsible for the epigenetic basis for gene reprogramming in inflammation. From these results, novel therapeutic interventions or preventions may be designed to improve the poor outcomes associated with SSI.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Innate Immunity and Inflammation Study Section (III)
Program Officer
Dong, Gang
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Vachharajani, Vidula T; Liu, Tiefu; Brown, Candice M et al. (2014) SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol 96:785-96
Vachharajani, Vidula; Liu, Tiefu; McCall, Charles E (2014) Epigenetic coordination of acute systemic inflammation: potential therapeutic targets. Expert Rev Clin Immunol 10:1141-50
Liu, Yongmei; Ding, Jingzhong; Reynolds, Lindsay M et al. (2013) Methylomics of gene expression in human monocytes. Hum Mol Genet 22:5065-74
Brudecki, Laura; Ferguson, Donald A; McCall, Charles E et al. (2013) Mitogen-activated protein kinase phosphatase 1 disrupts proinflammatory protein synthesis in endotoxin-adapted monocytes. Clin Vaccine Immunol 20:1396-404
Liu, Tie Fu; McCall, Charles E (2013) Deacetylation by SIRT1 Reprograms Inflammation and Cancer. Genes Cancer 4:135-47
Millet, Patrick; McCall, Charles; Yoza, Barbra (2013) RelB: an outlier in leukocyte biology. J Leukoc Biol 94:941-51
Hoth, J Jason; Wells, Jonathan D; Yoza, Barbara K et al. (2012) Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses. Shock 37:385-91
Yoza, Barbara K; McCall, Charles E (2011) Facultative heterochromatin formation at the IL-1 beta promoter in LPS tolerance and sepsis. Cytokine 53:145-52
McCall, Charles E; El Gazzar, Mohamed; Liu, Tiefu et al. (2011) Epigenetics, bioenergetics, and microRNA coordinate gene-specific reprogramming during acute systemic inflammation. J Leukoc Biol 90:439-46
El Gazzar, Mohamed; Church, Ashley; Liu, Tiefu et al. (2011) MicroRNA-146a regulates both transcription silencing and translation disruption of TNF-? during TLR4-induced gene reprogramming. J Leukoc Biol 90:509-19

Showing the most recent 10 out of 15 publications