The dimorphic fungus, Histoplasma capsulatum (Hc), is endemic to the Midwestern and southeastern United States and is the most frequent cause of fungal respiratory infections. The organism thrives within the intracellular environment of macrophages and establishes a latent state. Using a multidisciplinary approach including metalloproteomics, immunobiology, and bioinformatics, our studies have identified a novel activity of the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF). Exposure of human and murine macrophages to GM-CSF sharply limits zinc, but not iron or copper, accessibility to intracellular Hc. Deprivation of zinc is associated with a marked and selective upregulation in a zinc importer and two zinc exporters in murine macrophages. Moreover, murine macrophages amass intracellular zinc but they deny it to the fungus by storage in metallothioneins. We have gathered substantial mechanistic data to indicate that limiting access to zinc is a principal means by which GM-CSF activation halts intracellular growth of Hc. This new finding has led us to hypothesize that zinc limitation is a crucial host resistance mechanism exerted by GM-CSF on macrophages. Herein, we propose 3 specific aims.
The first aim i s to identify the signaling pathways and zinc transporters in human macrophages that alter zinc content in host cells and in Hc. The intent is to determine how human macrophages respond to GM-CSF including alteration of transporters and storage molecules.
Aim 2 harnesses data gathered in aim 1 and in our preliminary data to investigate the functional importance of the identified zinc transporters and storage molecules in depriving Hc of this trace metal.
Aim 3 will examine how IL-4, which counteracts the effect of GM-CSF, promotes increases in zinc content in Hc. This application utilizes an interdisciplinary team to open an intriguing vista in antimicrobial effector research and phagocyte biology.

Public Health Relevance

The pathogenic fungus, Histoplasma capsulatum, multiplies in macrophages and requires zinc for growth. GM-CSF activation of macrophages limits fungal growth by zinc deprivation. Our work will decipher the pathways and molecules that lead to zinc depletion and will provide new insights into phagocyte biology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI106269-02
Application #
8660629
Study Section
Special Emphasis Panel (ZRG1-IDM-M (03))
Program Officer
Duncan, Rory A
Project Start
2013-05-15
Project End
2018-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
2
Fiscal Year
2014
Total Cost
$502,891
Indirect Cost
$181,797
Name
University of Cincinnati
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
041064767
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Bueter, Chelsea L; Deepe Jr, George S (2018) Aeroallergens Exacerbate Histoplasma capsulatum Infection. J Immunol 201:3352-3361
Deepe Jr, George S (2018) Outbreaks of histoplasmosis: The spores set sail. PLoS Pathog 14:e1007213
Tweedle, Jamie L; Deepe Jr, George S (2018) Tumor Necrosis Factor Alpha Antagonism Reveals a Gut/Lung Axis That Amplifies Regulatory T Cells in a Pulmonary Fungal Infection. Infect Immun 86:
Subramanian Vignesh, Kavitha; Deepe Jr, George S (2017) Metallothioneins: Emerging Modulators in Immunity and Infection. Int J Mol Sci 18:
Hsieh, Heidi; Horwath, Michael C; Genter, Mary Beth (2017) Zinc gluconate toxicity in wild-type vs. MT1/2-deficient mice. Neurotoxicology 58:130-136
Horwath, Michael C; Bell-Horwath, Tiffany R; Lescano, Victor et al. (2017) Antifungal Activity of the Lipophilic Antioxidant Ferrostatin-1. Chembiochem 18:2069-2078
Donnell, Anna M; Lewis, Stephanie; Abraham, Sami et al. (2017) Investigation of an optimal cell lysis method for the study of the zinc metalloproteome of Histoplasma capsulatum. Anal Bioanal Chem 409:6163-6172
Verma, A H; Bueter, C L; Rothenberg, M E et al. (2017) Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2-/- mice. Mucosal Immunol 10:194-204
Subramanian Vignesh, Kavitha; Landero Figueroa, Julio A; Porollo, Aleksey et al. (2016) IL-4 Induces Metallothionein 3- and SLC30A4-Dependent Increase in Intracellular Zn(2+) that Promotes Pathogen Persistence in Macrophages. Cell Rep 16:3232-3246
George, Mariam Mathew; Subramanian Vignesh, Kavitha; Landero Figueroa, Julio A et al. (2016) Zinc Induces Dendritic Cell Tolerogenic Phenotype and Skews Regulatory T Cell-Th17 Balance. J Immunol 197:1864-76

Showing the most recent 10 out of 22 publications