The long-term objective of this project is to determine the function(s) of dystrophin in striated muscle in order to understand how its absence or abnormality leads to the pathologies observed in Duchenne (DMD) and Becker (BMD) muscular dystrophies. During the most recent project period, we uniquely employed the baculovirus expression system and an array of biochemical/biophysical assays to define the actin binding properties of dystrophin and its homologue utrophin. We also demonstrated that dystrophin functions to organize the microtubule lattice of skeletal muscle through a direct binding interaction. Finally, we demonstrated that a baculovirus-expressed TAT-micro-utrophin construct shows promise as a novel protein replacement therapy for DMD. Based on these published results and exciting new preliminary data, we propose three new specific aims to: 1) test the hypothesis that disease-causing missense mutations in dystrophin cause a loss of function through protein aggregation, 2) determine the functional importance of microtubule lattice organization in skeletal muscle, and 3) reinvestigate functional necessity for the dystrophin carboxyl-terminal domain in skeletal muscle. The project will employ biochemical/biophysical methods to characterize a variety of dystrophin and utrophin protein constructs in combination with complementary experiments in isolated cells and transgenic mice. The proposed studies will address several fundamental questions about the function of dystrophin in normal skeletal muscle and how its absence or abnormality causes human diseases of skeletal muscle.

Public Health Relevance

Duchenne muscular dystrophy (DMD) afflicts 1 in 3,500 live-born males and is typically lethal by the third decade. No effective therapies are currently available for DMD. Dystrophin is the protein missing in patients with DMD, but its function in muscle is not fully understood. Through rigorous biochemical/biophysical characterization of full-length dystrophin and utrophin in combination with complementary experiments in isolated cells and transgenic mice, the proposed studies will elucidate the functions of dystrophin in normal muscle and how its absence causes muscular dystrophy. Thus, this project is highly relevant to understanding the pathological mechanism of Duchenne muscular dystrophy and for the development of effective therapies.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Muscle and Exercise Physiology Study Section (SMEP)
Program Officer
Nuckolls, Glen H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Medicine
United States
Zip Code
Belanto, Joseph J; Olthoff, John T; Mader, Tara L et al. (2016) Independent variability of microtubule perturbations associated with dystrophinopathy. Hum Mol Genet 25:4951-4961
McCourt, Jackie L; Rhett, Katrina K; Jaeger, Michele A et al. (2015) In vitro stability of therapeutically relevant, internally truncated dystrophins. Skelet Muscle 5:13
Talsness, Dana M; Belanto, Joseph J; Ervasti, James M (2015) Disease-proportional proteasomal degradation of missense dystrophins. Proc Natl Acad Sci U S A 112:12414-9
Filareto, Antonio; Rinaldi, Fabrizio; Arpke, Robert W et al. (2015) Pax3-induced expansion enables the genetic correction of dystrophic satellite cells. Skelet Muscle 5:36
Vulin, Adeline; Wein, Nicolas; Strandjord, Dana M et al. (2014) The ZZ domain of dystrophin in DMD: making sense of missense mutations. Hum Mutat 35:257-64
Belanto, Joseph J; Mader, Tara L; Eckhoff, Michael D et al. (2014) Microtubule binding distinguishes dystrophin from utrophin. Proc Natl Acad Sci U S A 111:5723-8
Johnson, Eric K; Li, Bin; Yoon, Jung Hae et al. (2013) Identification of new dystroglycan complexes in skeletal muscle. PLoS One 8:e73224
Filareto, Antonio; Parker, Sarah; Darabi, Radbod et al. (2013) An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4:1549
Henderson, Davin M; Lin, Ava Yun; Thomas, David D et al. (2012) The carboxy-terminal third of dystrophin enhances actin binding activity. J Mol Biol 416:414-24
Lin, Ava Yun; Prochniewicz, Ewa; Henderson, Davin M et al. (2012) Impacts of dystrophin and utrophin domains on actin structural dynamics: implications for therapeutic design. J Mol Biol 420:87-98

Showing the most recent 10 out of 36 publications