Despite enormous advances in understanding of the pathological mechanisms, the outcome of malignant brain tumors remains bleak. In part, the failure can be attributed to the inability to deliver effective and sufficient concentrations of chemotherapeutic drugs to the tumor site. The unique anatomical, physiological, and functional characteristics of brain tissue pose enormous challenges to drug delivery. A variety of formulations of chemotherapeutic drugs have been developed to better target tumor tissues, these include: conventional liposome, sterically-stabilized (Stealth) liposomes, immunoliposomes, programmable fusogenic vehicles, nanoparticles, and magnetic nanoparticles, amongst others. For optimum benefit these smart drug formulation have to be injected locally, however the kinetics of intraarterial (IA) drug delivery to the brain is ill-understood as yet due to the lack of a method to measure tissue drug concentrations in real time. Our overall goal is to improve IA delivery of liposomal formulations chemotherapeutic drugs, guided by real-time, tissue noninvasive optical methods for monitoring drug concentrations. Optical techniques we propose also permit simultaneous assessment of blood brain barrier permeability. We will identify the properties of liposomes and determine the optimum method for their IA delivery. We will develop computational models that will help translate this preclinical research to novel treatments of human brain tumors. IA injections side-step the very significant problem of rapid clearance of liposomes and nanoparticles, by the high- capacity/high affinity clearance mechanisms - mainly in the reticuloendothelial system that has prevented the development of effective liposome-based therapeutics since the late 1970's. Improved IA delivery means that a wide range of approaches, which have been rendered ineffective by systemic administration - may now be brought to bear for the treatment of malignant brain tumors. An entire range of liposomes compositions (or biophysical/biopharmaceutical properties) that were of limited utility after conventional systemic administration might be employable by improved IA injections. Using mitoxantrone as the prototype chemotherapeutic drug, our goal is to utilize optical tools to better understand the ultra-fast and complex kinetic of IA drug delivery, to use a combination of better injection techniques and smart formulations to improve regional drug delivery, and to demonstrate increased survival in experimental a rabbit brain tumor model. The twin objectives of this multi- center (Columbia University, Boston University and University of Buffalo) application are to identify improved methods of drug delivery to the brain/brain tumors, and in parallel, to develop of an integrated optical system capable of tracking tissue concentrations, blood flow, and capillary permeability parameters and safer techniques to disrupt the blood brain barrier. While this project focuses on chemotherapeutic drugs, the technologies and pharmacokinetic insights it will generate will have applications beyond treatment of brain cancers.

Public Health Relevance

The overall goal of this project is to improve intraarterial (IA) delivery of liposomal formulations of chemotherapeutic drugs, guided by real-time, tissue noninvasive optical methods for monitoring drug concentrations. Optical techniques we propose also permit simultaneous assessment of blood brain barrier permeability. We will identify the properties of liposomes and determine the optimum method for their IA delivery. Furthermore, we will develop computational models that will help translate this preclinical research to novel treatments of human brain tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA138643-04
Application #
8629541
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Baker, Houston
Project Start
2011-04-01
Project End
2016-03-31
Budget Start
2014-05-30
Budget End
2015-03-31
Support Year
4
Fiscal Year
2014
Total Cost
$466,543
Indirect Cost
$108,938
Name
Columbia University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Romanov, Alexander; Moon, Rajinder-Singh; Wang, Mei et al. (2014) Paradoxical increase in the bispectral index during deep anesthesia in New Zealand white rabbits. J Am Assoc Lab Anim Sci 53:74-80
Joshi, Shailendra; Singh-Moon, Rajinder; Wang, Mei et al. (2014) Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J Neurooncol 120:489-97
Joshi, Shailendra; Singh-Moon, Rajinder; Wang, Mei et al. (2014) Real-time hemodynamic response and mitochondrial function changes with intracarotid mannitol injection. Brain Res 1549:42-51
Singh-Moon, Rajinder P; Roblyer, Darren M; Bigio, Irving J et al. (2014) Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging. J Biomed Opt 19:96003
Joshi, Shailendra; Ellis, Jason A; Emala, Charles W (2014) Revisiting intra-arterial drug delivery for treating brain diseases or is it "déjà-vu, all over again"? J Neuroanaesth Crit Care 1:108-115
Joshi, Shailendra; Singh-Moon, Rajinder P; Wang, Mei et al. (2014) Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J Neurooncol 118:73-82
Ergin, Aysegul; Wang, Mei; Zhang, Jane Y et al. (2012) The feasibility of real-time in vivo optical detection of blood-brain barrier disruption with indocyanine green. J Neurooncol 106:551-60
Joshi, Shailendra; Ergin, Aysegul; Wang, Mei et al. (2011) Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits: implications for chemotherapy. J Neurooncol 104:11-9
Joshi, Shailendra; Reif, Roberto; Wang, Mei et al. (2011) Intra-arterial mitoxantrone delivery in rabbits: an optical pharmacokinetic study. Neurosurgery 69:706-12; discussion 712