Brain tumors are the most common solid malignancies and the leading cause of cancer- related death in children. Medulloblastoma (MB) is the most common pediatric brain tumor. Dissemination (metastasis) of MB through the cerebrospinal fluid seeds the leptomeningeal membranes that cover the brain and spinal cord. Metastases in MB are refractory to treatment, essentially defining children with incurable tumor. We mobilized the transposable element Sleeping Beauty (SB) in a genetically engineered mouse model of MB driven by Sonic Hedgehog (Shh) signaling and observed robust metastases. Genetic analyses of matched primary and metastatic lesions indicate that tumors undergo parallel evolution and harbor distinct, clonally selected mutations generated by transposition. This is among the first mouse models enabling identification of genes driving metastases. We hypothesize that SB can uncover clonal organization and genes underlying progression/metastasis, and that these data will inform human MB. We propose experiments characterizing paired primary and metastatic tumors from patients with MB. We also propose additional SB based experiments to identify metastases genes in a novel MYCN-driven model for MB which arises largely independently of Shh signaling and which models both classic (60% of human MB) and large cell, anaplastic pathologies (10% of human MB). Because classic human MB can be driven either by myc or by loss of p53, we will also mobilize SB in p53 deficient mice. The use of 3 models minimizes biological effects due to background, characterizes a broad genetic subset of MB, and facilitates identification and prioritization of: 1). Genes driving metastases in 3 distinct models for MB. 2). Candidates metastases genes altered in human MB. 3). Potential therapeutic targets. These data have profound implications for therapy, which assumes that metastases are biologically similar to the primary tumor. A.1.To recover transposon insertion site sequences from matched primary/metastatic GEM MB in two models in order to identify genes and pathways important for MB pathogenesis. A.2.To validate the functional importance of candidate metastases genes identified by SB insertion. A.3.To evaluate hierarchical structures, genes and pathways important for leptomeningeal dispersion using human genomic data, and paired tumors and metastases from human MB.

Public Health Relevance

Medulloblastoma (MB) is a common and frequently lethal tumor of children, for which current therapies are often ineffective. Locoregional dissemination (metastasis) of MB through the cerebrospinal fluid essentially defines incurable MB. Our long term objective is to mobilize the transposable element Sleeping Beauty (SB) in three different genetically engineered mouse models of MB to dissect the clonal organization and genetic bases of malignant progression and leptomeningeal metastasis, to inform human MB. Successful completion of this proposal identifies metastases genes and new therapeutic targets for children with metastatic MB.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Jhappan, Chamelli
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Bradlyn, Barry; Elcoro, L; Cano, Jennifer et al. (2017) Topological quantum chemistry. Nature 547:298-305
Grausam, Katie B; Dooyema, Samuel D R; Bihannic, Laure et al. (2017) ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas. Cancer Res 77:3766-3777
Northcott, Paul A; Buchhalter, Ivo; Morrissy, A Sorana et al. (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311-317
Morrissy, A Sorana; Cavalli, Florence M G; Remke, Marc et al. (2017) Spatial heterogeneity in medulloblastoma. Nat Genet 49:780-788
Fan, QiWen; Aksoy, Ozlem; Wong, Robyn A et al. (2017) A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell 31:424-435
Morrissy, A Sorana; Garzia, Livia; Shih, David J H et al. (2016) Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529:351-7
Wen, J; Lee, J; Malhotra, A et al. (2016) WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma. Oncogene 35:5552-5564
Ramaswamy, Vijay; Hielscher, Thomas; Mack, Stephen C et al. (2016) Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. J Clin Oncol 34:2468-77
Mack, Stephen C; Hubert, Christopher G; Miller, Tyler E et al. (2016) An epigenetic gateway to brain tumor cell identity. Nat Neurosci 19:10-9
Ramaswamy, Vijay; Remke, Marc; Adamski, Jennifer et al. (2016) Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients? Neuro Oncol 18:291-7

Showing the most recent 10 out of 59 publications