Because communicating is so critical to functioning in the world, disorders of speech production are among the most debilitating neurological conditions. Developing effective treatments will require accurate, interpretable models of the neural processes controlling speaking. In defining such models, the role of sensory feedback has been a key issue: speaking appears to be both a feedforward process (you can speak with sensory feedback blocked) and a feedback process (alteration of sensory feedback modifies speech). One way to model this duality is to take an existing model of speech motor control based on sensory feedback control and augment it with a separate feedforward controller. This is the approach taken in DIVA, a currently dominant model of speech motor control, where feedback and feedforward control subsystems combine their outputs in motor cortex to control the vocal tract. In our lab, however, we have been investigating another way of modeling the feedforward and feedback characteristics of speech called observer-based, state feedback control (SFC). Here, control of speech is based entirely on feedback control, but the feedback comes from a surrogate called an observer that is only indirectly affected by real sensory feedback. Both models can account for the behavioral characteristics of speaking, but they make very different and testable predictions about the underlying neural processes responsible for those behaviors. Here, we will test the differing predictions of these two models by perturbing the auditory feedback of subjects as they speak and examining their neural responses to these feedback perturbations using several different functional neuroimaging methods: magnetoencephalographic imaging (MEG-I) and electrocorticography (ECoG). Outside of speech motor research, SFC models of other motor behaviors (e.g. reaching, eye movements) are becoming more prevalent, in large part because people appear to move in optimal ways (i.e., minimizing expended energy, only controlling task-relevant aspects of their movements) and SFC is the foundation of modern optimal control theory. If the neural control of speaking were shown to be consistent with an SFC model, we could relate it to other domains of motor control research and leverage an extensive theoretical knowledge base, allowing us to make powerful predictions of the model's behavior.

Public Health Relevance

Because communicating is so critical to functioning in the world, disorders of speech production are among the most debilitating neurological conditions. In order to develop effective treatments for speech dysfunctions, such as those in stuttering, apraxia of speech, dysarthria, spasmodic dysphonia, and Parkinson's disease, we need accurate models of the neural processes controlling speaking. In this project, we will use functional neuroimaging to test how well a promising new model of speech motor control predicts the neural activity associated with speaking.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Motor Function, Speech and Rehabilitation Study Section (MFSR)
Program Officer
Shekim, Lana O
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Subramaniam, Karuna; Kothare, Hardik; Mizuiri, Danielle et al. (2018) Reality Monitoring and Feedback Control of Speech Production Are Related Through Self-Agency. Front Hum Neurosci 12:82
Subramaniam, Karuna; Gill, Jeevit; Fisher, Melissa et al. (2018) White matter microstructure predicts cognitive training-induced improvements in attention and executive functioning in schizophrenia. Schizophr Res 193:276-283
Ranasinghe, Kamalini G; Gill, Jeevit S; Kothare, Hardik et al. (2017) Abnormal vocal behavior predicts executive and memory deficits in Alzheimer's disease. Neurobiol Aging 52:71-80
Ranasinghe, Kamalini G; Hinkley, Leighton B; Beagle, Alexander J et al. (2017) Distinct spatiotemporal patterns of neuronal functional connectivity in primary progressive aphasia variants. Brain 140:2737-2751
Subramaniam, Karuna; Ranasinghe, Kamalini G; Mathalon, Daniel et al. (2017) Neural mechanisms of mood-induced modulation of reality monitoring in schizophrenia. Cortex 91:271-286
Parrell, Benjamin; Agnew, Zarinah; Nagarajan, Srikantan et al. (2017) Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration. J Neurosci 37:9249-9258
Dale, Corby L; Brown, Ethan G; Fisher, Melissa et al. (2016) Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia. Schizophr Bull 42:220-8
Subramaniam, Karuna; Gill, Jeevit; Slattery, Patrick et al. (2016) Neural Mechanisms of Positive Mood Induced Modulation of Reality Monitoring. Front Hum Neurosci 10:581
Hinkley, Leighton B N; Marco, Elysa J; Brown, Ethan G et al. (2016) The Contribution of the Corpus Callosum to Language Lateralization. J Neurosci 36:4522-33
Englot, Dario J; Nagarajan, Srikantan S; Wang, Doris D et al. (2016) The sensitivity and significance of lateralized interictal slow activity on magnetoencephalography in focal epilepsy. Epilepsy Res 121:21-8

Showing the most recent 10 out of 37 publications