Comorbid conditions, such as diabetes, increase the severity of acute kidney injury (AKI) and prevents injured kidneys from recovery, resulting in poor prognosis. However, the mechanism underlying the heightened AKI sensitivity in diabetes is largely unknown. We and others recently verified the AKI sensitivity in diabetes and suggested the involvement of inflammation and p53. In diabetic kidneys, our preliminary studies further demonstrated the inactivation of autophagy, a renoprotective mechanism. Mechanistically, we have identified the down-regulation of ULK1, a key autophagy initiator, as a common feature in diabetic kidneys and high glucose-treated kidney cells. ULK1 down-regulation is not associated with mRNA decrease or proteosomal degradation, suggesting the involvement of novel mechanisms. Bioinformatics analysis suggested the targeting of ULK1 by miR-214, a microRNA induced in diabetic kidneys. Notably, our preliminary data further suggested a role of p53 in miR-214 induction. Based on these findings, we hypothesize that: miR-214 is induced via p53 in diabetes and upon induction, miR-214 represses ULK1 resulting in autophagy impairment, which contributes to AKI sensitivity in diabetes. Specifically, we will determine the role of p53 in miR-214 induction in diabetic kidneys, delineate miR-214 targeting/repression of ULK1, and elucidate autophagy impairment as a key to AKI sensitivity in diabetes. Completion of this project will delineate a novel pathway of p53/miR- 214/ULK1 that leads to autophagy impairment and AKI sensitivity in diabetes. As a result, it may identify miR-214 and autophagy as novel therapeutic targets for AKI therapy and prevention in diabetic patients.

Public Health Relevance

(Relevance) Acute kidney injury (AKI) often associates with co-morbidities, such as diabetes, which worsen AKI and result in poor prognosis. This application will elucidate a novel pathway of p53/miR-214/ULK1 that leads to autophagy impairment in diabetes and heightened AKI sensitivity. As a result, it may identify miR-214 and autophagy as new therapeutic targets for AKI therapy and prevention in diabetic patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK058831-16
Application #
9418040
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Chan, Kevin E
Project Start
2001-09-01
Project End
2022-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
16
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Augusta University
Department
Biology
Type
Schools of Medicine
DUNS #
City
Augusta
State
GA
Country
United States
Zip Code
30912
Yan, Mingjuan; Shu, Shaoqun; Guo, Chunyuan et al. (2018) Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Ann Med 50:381-390
Li, Fanghua; Liu, Zhiwen; Tang, Chengyuan et al. (2018) FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury. FASEB J 32:3423-3433
Yang, Danyi; Livingston, Man J; Liu, Zhiwen et al. (2018) Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 75:669-688
Wang, Shixuan; Liu, Aimin; Wu, Guangyu et al. (2018) The CPLANE protein Intu protects kidneys from ischemia-reperfusion injury by targeting STAT1 for degradation. Nat Commun 9:1234
Liu, Jing; Wei, Qingqing; Guo, Chunyuan et al. (2017) Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. Int J Mol Sci 18:
Zhang, Dongshan; Pan, Jian; Xiang, Xudong et al. (2017) Protein Kinase C? Suppresses Autophagy to Induce Kidney Cell Apoptosis in Cisplatin Nephrotoxicity. J Am Soc Nephrol 28:1131-1144
Hao, Jielu; Wei, Qingqing; Mei, Shuqin et al. (2017) Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6. Kidney Int 91:106-118
He, Liyu; Wei, Qingqing; Liu, Jing et al. (2017) AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 92:1071-1083
Hao, Jielu; Lou, Qiang; Wei, Qingqing et al. (2017) MicroRNA-375 Is Induced in Cisplatin Nephrotoxicity to Repress Hepatocyte Nuclear Factor 1-?. J Biol Chem 292:4571-4582
Guo, Chunyuan; Pei, Lirong; Xiao, Xiao et al. (2017) DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8. Kidney Int 92:1194-1205

Showing the most recent 10 out of 58 publications