The long-term goals of the proposed research are to improve the acquisition, reconstruction, and extraction of quantitative information from emission tomographic images of challenging radionuclides and to assess these improvements using task-dependent criteria. During the current project period, we have concentrated our efforts on complex radionuclides, e.g., 111In and 67Cu, as well as on simultaneous dual- radionuclide imaging of 111In and 99mTc. During the next project period, we will refine our research with these radionuclides;however, we will also extend the work in three new directions in order to address important technical challenges in pre-clinical emission tomographic imaging of mice, bremsstrahlung imaging of beta emitters used for radionuclide therapy, and reduction of systematic errors due to physical factors that currently limit the accuracy and precision of treatment planning in targeted radionuclide therapy. The imaging tasks that we will consider involve estimation of activity concentration in tumors or in regions of infection. We will measure, using simulated data as well as phantom, animal, and/or patient data, the improvements in task performance resulting from our new methodologies, and compare the performance achieved to theoretical bounds. We will consider clinical tasks related to treatment planning for radiotherapy of tumors expressing somatostatin receptors, as well as to treatment of hepatic tumors and metastases with 90Y- labeled microspheres, and to the diagnosis of osteomyelitis. We will extend our SPECT collimator design work to the case of simultaneous dual-radionuclide imaging, and to address the unresolved issue of whether collimator optimization on the basis of projection datasets is sufficient, or whether the collimator should be jointly optimized with the reconstruction algorithm. We will also develop and assess a reconstruction technique for bremsstrahlung SPECT, as well as a model- based procedure for correcting SPECT-CT and PET-CT images for the "partial volume effect." Finally, we will compare the performance of a Monte-Carlo based iterative reconstruction algorithm to that of a quantitative planar imaging approach for the diagnosis of osteomyelitis using dual-tracer data.

Public Health Relevance

The proposed research will address technical challenges which complicate emission tomographic imaging of several radionuclides which are of value for diagnosis, treatment planning, and therapy of cancer, as well as for diagnosis of bone infection. The insights and improved imaging techniques which will emerge from this research will lead to better diagnosis and management of these diseases.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Sastre, Antonio
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Sitek, Arkadiusz; Moore, Stephen C (2013) Evaluation of imaging systems using the posterior variance of emission counts. IEEE Trans Med Imaging 32:1829-39
Cervo, Morgan; Gerbaudo, Victor H; Park, Mi-Ae et al. (2013) Quantitative simultaneous 111Inýýý99mTc SPECT-CT of osteomyelitis. Med Phys 40:082501
Park, Mi-Ae; Moore, Stephen C; Muller, Stefan P et al. (2013) Performance of a high-sensitivity dedicated cardiac SPECT scanner for striatal uptake quantification in the brain based on analysis of projection data. Med Phys 40:042504
Moore, Stephen C; Southekal, Sudeepti; Park, Mi-Ae et al. (2012) Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and spillover effects. IEEE Trans Med Imaging 31:405-16
Southekal, Sudeepti; McQuaid, Sarah J; Kijewski, Marie Foley et al. (2012) Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest. Phys Med Biol 57:685-701
McQuaid, Sarah J; Southekal, Sudeepti; Kijewski, Marie Foley et al. (2011) Joint optimization of collimator and reconstruction parameters in SPECT imaging for lesion quantification. Phys Med Biol 56:6983-7000
Sitek, Arkadiusz (2011) Reconstruction of emission tomography data using origin ensembles. IEEE Trans Med Imaging 30:946-56
Ouyang, Jinsong; Zhu, Xuping; Trott, Cathryn M et al. (2009) Quantitative simultaneous 99mTc/123I cardiac SPECT using MC-JOSEM. Med Phys 36:602-11
Park, Mi-Ae; Zimmerman, Robert E; Taberner, Andrew et al. (2008) Design and fabrication of phantoms using stereolithography for small-animal imaging systems. Mol Imaging Biol 10:231-6
Park, Mi-Ae; Mahmood, Ashfaq; Zimmerman, Robert E et al. (2008) Adsorption of metallic radionuclides on plastic phantom walls. Med Phys 35:1606-10

Showing the most recent 10 out of 21 publications