? The long-term goals of the proposed research are to improve the acquisition, reconstruction, and extraction of quantitative information from SPECT images of medium-energy radionuclides, and to assess these improvements to the imaging system using task-dependent criteria. Medium-energy radionuclides are becoming increasingly important for the diagnosis, staging, and treatment of cancer. During the first project period, we focused our attention on improving collimation and corrections for scatter and nonuniform attenuation for Ga-67 SPECT imaging, as well as on enhancing our techniques for Monte Carlo simulation of medium-energy photons. In this renewal application, we turn our attention to similar improvements to SPECT imaging of other medium-energy radionuclides, such as In-111, Lu-177, and Cu-67, that are playing an increasing role in cancer diagnosis and therapy. We will construct and evaluate new collimators, designed for Ga-67 during the previous funding period, and design, construct, and evaluate new collimation for In-111. Our experience in simultaneous dual-isotope SPECT imaging will be extended to radionuclide pairs that include medium-energy photon emitters. We will develop a new joint iterative algorithm, based on very rapid Monte Carlo simulation of scatter, crosstalk, and lead x-rays in several energy windows, to correct simultaneously for these phenomena on SPECT images of isotopes emitting multiple decay photons, as well as to accomplish simultaneous imaging of dual-isotope pairs. We will measure, using simulated data, as well as phantom and patient data, the improvements in activity and size estimation due to improved imaging procedures, and compare the performance achieved to theoretical bounds. We will also compare the utility of several gamma/beta-emitting nuclides (or nuclide pairs) on the basis of the accuracy with which radioimmunotherapy dosimetry can be accomplished. The feasibility of our simultaneous dual-isotope procedures will be evaluated on the basis of performance in two clinical tasks using patient images. The first is prediction of progression from low-grade to higher-grade NHL using simultaneous imaging of Ga-67 and TI-201, and the second is diagnosis of vertebral osteomyelitis based on simultaneous imaging of Ga-67 and Tc-99m-MDP. We expect that the imaging system improvements that will be accomplished during the proposed project period will lead to more accurate diagnosis, staging, and/or treatment of patients and, consequently, improved patient care. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB001989-10
Application #
7225515
Study Section
Special Emphasis Panel (ZRG1-RNM (01))
Program Officer
Haller, John W
Project Start
1998-01-09
Project End
2009-06-14
Budget Start
2007-05-01
Budget End
2009-06-14
Support Year
10
Fiscal Year
2007
Total Cost
$439,956
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Cal-González, J; Moore, S C; Park, M-A et al. (2015) Improved quantification for local regions of interest in preclinical PET imaging. Phys Med Biol 60:7127-49
Sitek, Arkadiusz; Moore, Stephen C (2013) Evaluation of imaging systems using the posterior variance of emission counts. IEEE Trans Med Imaging 32:1829-39
Cervo, Morgan; Gerbaudo, Victor H; Park, Mi-Ae et al. (2013) Quantitative simultaneous 111In?99mTc SPECT-CT of osteomyelitis. Med Phys 40:082501
Park, Mi-Ae; Moore, Stephen C; Müller, Stefan P et al. (2013) Performance of a high-sensitivity dedicated cardiac SPECT scanner for striatal uptake quantification in the brain based on analysis of projection data. Med Phys 40:042504
Sitek, Arkadiusz (2012) Data analysis in emission tomography using emission-count posteriors. Phys Med Biol 57:6779-95
Moore, Stephen C; Southekal, Sudeepti; Park, Mi-Ae et al. (2012) Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and spillover effects. IEEE Trans Med Imaging 31:405-16
Southekal, Sudeepti; McQuaid, Sarah J; Kijewski, Marie Foley et al. (2012) Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest. Phys Med Biol 57:685-701
McQuaid, Sarah J; Southekal, Sudeepti; Kijewski, Marie Foley et al. (2011) Joint optimization of collimator and reconstruction parameters in SPECT imaging for lesion quantification. Phys Med Biol 56:6983-7000
Sitek, Arkadiusz (2011) Reconstruction of emission tomography data using origin ensembles. IEEE Trans Med Imaging 30:946-56
Ouyang, Jinsong; Zhu, Xuping; Trott, Cathryn M et al. (2009) Quantitative simultaneous 99mTc/123I cardiac SPECT using MC-JOSEM. Med Phys 36:602-11

Showing the most recent 10 out of 23 publications