This study will make a full description of the blue/green (S/M) color opponent ganglion cells in the rabbit retina. This description is intended to be full both in complete sampling of all such ganglion cells and also in depth of characterization of each type of S/M ganglion cell. Decades of early work in many species have led to description of usually only a single type, an S-ON and, much less often, an S-OFF type in addition or instead. Negative evidence coupled with recent discovery of an S-OFF ganglion cells produced by inversion of the S-ON bipolar cell signal has led to widespread rejection of the possibility of S-OFF pathways initiated by an S- OFF bipolar cell. Recent work has considerably advanced our understanding of the mechanisms of color opponency in the midget and small bistratified ganglion cells of primates. However, these 2 color opponent ganglion cells are often considered unique primate inventions, as they have no obvious parallels in other mammals. Further, the total number of chromatic ganglion cells and whether they suffice to produce cortical color mechanisms remains controversial. We will sample at least 3 S/M ganglion cell types that we have discovered in the rabbit retina, determine the nature of their inputs from other retinal neurons and how these interact to obtain very specific attributes of these color opponent cells, including their spatial and chromatic receptive field properties, the influence of surround stimuli and their anatomical underpinnings. These findings will be highly relevant to the understanding of color pathways as they underpin later central processing. S cone pathways in particular have been recently implicated in surprising areas not selective for color, including areas involved in form and motion vision, and which may be responsible for blindsight. S cone pathways are also important in research into migraine and glaucoma.

Public Health Relevance

The goal of this project is to begin understand the number and types of blue-green ganglion cells in mammals. Color vision is a critical part of our visual processing pathways in almost all vertebrates as they search for food and mates and avoid predators. How these pathways are constructed is still poorly understood. These blue-green pathways may be pivotal in such important functions as detection of form, especially shadows and defeating camouflage and in blindsight. Blue-green sensitive ganglion cells serve important roles in migraine and in early detection of glaucoma.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01EY010121-18
Application #
8786776
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Greenwell, Thomas
Project Start
Project End
Budget Start
Budget End
Support Year
18
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Texas Health Science Center Houston
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77225
Marshak, David W; Chuang, Alice Z; Dolino, Drew M et al. (2015) Synaptic connections of amacrine cells containing vesicular glutamate transporter 3 in baboon retinas. Vis Neurosci 32:E006
Mills, Stephen L; Tian, Lian-Ming; Hoshi, Hideo et al. (2014) Three distinct blue-green color pathways in a mammalian retina. J Neurosci 34:1760-8
Mao, Chai-An; Li, Hongyan; Zhang, Zhijing et al. (2014) T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells. J Neurosci 34:13083-95
Marshak, David W; Mills, Stephen L (2014) Short-wavelength cone-opponent retinal ganglion cells in mammals. Vis Neurosci 31:165-75
Hoshi, Hideo; Tian, Lian-Ming; Massey, Stephen C et al. (2013) Properties of the ON bistratified ganglion cell in the rabbit retina. J Comp Neurol 521:1497-509
Vila, Alejandro; Satoh, Hiromasa; Rangel, Carolina et al. (2012) Histamine receptors of cones and horizontal cells in Old World monkey retinas. J Comp Neurol 520:528-43
Pan, Feng; Keung, Joyce; Kim, In-Beom et al. (2012) Connexin 57 is expressed by the axon terminal network of B-type horizontal cells in the rabbit retina. J Comp Neurol 520:2256-74
Hoshi, Hideo; Tian, Lian-Ming; Massey, Stephen C et al. (2011) Two distinct types of ON directionally selective ganglion cells in the rabbit retina. J Comp Neurol 519:2509-21
Hoshi, Hideo; Mills, Stephen L (2009) Components and properties of the G3 ganglion cell circuit in the rabbit retina. J Comp Neurol 513:69-82
Pan, Feng; Mills, Stephen L; Massey, Stephen C (2007) Screening of gap junction antagonists on dye coupling in the rabbit retina. Vis Neurosci 24:609-18

Showing the most recent 10 out of 20 publications