More than half of all proteins contain metal ions. A large percentage of those contain two metal ions (usually first-row transition metals or magnesium) connected by a bridging ligand (usually a carboxylate group). Most of these are enzymes, and they catalyze a great variety of different chemical reactions, ranging from hydrolysis to oxidation to isomerization to biopolymer synthesis. Yet little is understood about how the two metal ions work together in catalysis, or how the protein environment modulates the intrinsic chemical reactivity of the dimetal center. The objective of this proposal is to discover the general features common to all bridged bimetalloenzyme mechanisms as well as the specific effects of the rest of the protein on the chemistry of the metal cluster. We have selected two enzymes, Streptomyces olivochromogenes xylose isomerase (Xyl) and Aeromonas proteolytica aminopeptidase (AAP), as primary model systems for this investigation. Xylose isomerase uses a bridged dimagnesium center to catalyze sugar ring-opening followed by aldose-ketose interconversion, a reaction of great importance in the food industry. Aminopeptidase uses a dizinc center to hydrolyze the N-terminal amino acid from peptides and proteins;members of its family are targets for antimicrobial, antiviral and antitumor drugs. We intend to employ a range of techniques, including site-directed mutagenesis, kinetic analysis, inhibitor design and synthesis, ultra-high resolution X-ray crystallography, neutron diffraction, and combined quantum mechanics/molecular mechanics simulations to probe the role of the second shell residues in AAP and the role of the bridging ligand in Xyl. Crystals of both enzymes diffract X-rays to beyond 1 A resolution, allowing us to obtain extremely precise interatomic parameters and to determine the spatial distribution of both individual atomic vibrations and collective motions of groups of atoms. These data will be used as input into quantum mechanical and other calculations, allowing us to see how the rest of the protein affects the electronic distribution and chemical properties of the dimetal center. We already have evidence that mutation of at least one of the second shell ligands in AAP causes a significant change in the chemical properties of the bridged dizinc center: in the S228A mutant, the enzyme is much more sensitive than the wild-type protein to inhibition by sulfur containing compounds. In an additional specific aim, we will help develop a new method of refining protein crystal structures, one that incorporates a quantum mechanical potential. In addition, since we have just solved the structure of a bacterial quorum-sensing acyl-homoserine lactone hydrolase, we will carry out similar experiments and calculations on this dizinc enzyme, which has an unusual monodentate bridge.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM026788-27
Application #
7644377
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Flicker, Paula F
Project Start
1990-04-01
Project End
2011-06-30
Budget Start
2009-07-01
Budget End
2011-06-30
Support Year
27
Fiscal Year
2009
Total Cost
$343,671
Indirect Cost
Name
Brandeis University
Department
Type
Organized Research Units
DUNS #
616845814
City
Waltham
State
MA
Country
United States
Zip Code
02454
Deshpande, Aditi R; Pochapsky, Thomas C; Ringe, Dagmar (2017) The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 117:10474-10501
Deshpande, Aditi R; Wagenpfeil, Karina; Pochapsky, Thomas C et al. (2016) Metal-Dependent Function of a Mammalian Acireductone Dioxygenase. Biochemistry 55:1398-407
Huang, Yu-Hwa; Zhu, Chen; Kondo, Yasuyuki et al. (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386-90
Liu, Ce Feng; Liu, Dali; Momb, Jessica et al. (2013) A phenylalanine clamp controls substrate specificity in the quorum-quenching metallo-?-lactonase from Bacillus thuringiensis. Biochemistry 52:1603-10
Auclair, Jared R; Somasundaran, Mohan; Green, Karin M et al. (2012) Mass spectrometry tools for analysis of intermolecular interactions. Methods Mol Biol 896:387-98
Somarowthu, Srinivas; Brodkin, Heather R; D'Aquino, J Alejandro et al. (2011) A tale of two isomerases: compact versus extended active sites in ketosteroid isomerase and phosphoglucose isomerase. Biochemistry 50:9283-95
Lazar, Louis M; Fisher, S Zoe; Moulin, Aaron G et al. (2011) Time-of-flight neutron diffraction study of bovine ?-chymotrypsin at the Protein Crystallography Station. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:587-90
Liu, Dali; Momb, Jessica; Thomas, Pei W et al. (2008) Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures. Biochemistry 47:7706-14
Momb, Jessica; Wang, Canhui; Liu, Dali et al. (2008) Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate modeling and active site mutations. Biochemistry 47:7715-25
Munih, Petra; Moulin, Aaron; Stamper, Carin C et al. (2007) X-ray crystallographic characterization of the Co(II)-substituted Tris-bound form of the aminopeptidase from Aeromonas proteolytica. J Inorg Biochem 101:1099-107

Showing the most recent 10 out of 72 publications