The vacuolar type H+ATPase (V1Vo- or V-ATPase) is a fundamental component of all eukaryotic cells. The complex is found in the membranes of a wide variety of intracellular compartments like clathrin-coated vesicles, chromaffin granules, endosomes, lysosomes, synaptic vesicles, Golgi derived vesicles and the yeast vacuole. In higher eukaryotes, V-type ATPases are also found in the plasma membrane of polarized cells such as osteoclasts and renal epithelial cells. Structurally similar ATPases have also been identified in the plasma membrane of Archaea and bacteria, where they are called A-ATPases and bacterial A/V-ATPases, respectively. The proton pumping action of the vacuolar ATPase plays a vital role in a large number of intra- and inter- cellular processes. In eukaryotic cells, these processes include receptor mediated endocytosis, protein trafficking, pH maintenance, storage of metabolites and neurotransmitter release. In polarized cells of higher eukaryotes, a vacuolar type ATPase is pumping protons across the plasma membrane leading to an extra- cellular acidification. Acidification of the enclosed space between the ruffled membrane of osteoclasts and the bone surface plays an important role in bone resorption and remodeling. Defects in the human vacuolar ATPase have been associated with a number of diseases such as renal tubular acidosis, sensorineural deafness, osteoporosis, diabetes and cancer. Fighting these diseases on a molecular level will require a detailed understanding of the structure and mechanism of the eukaryotic V-ATPase complex, which is the long term goal of this project.
The Specific Aims of the now proposed work on the vacuolar ATPase are: (1) molecular structure and function of the vacuolar ATPase proton channel domain and (2) molecular structure and function of the V1 - Vo interface. In the first Aim, we plan to determine the atomic resolution x-ray crystal structure of the yeast vacuolar ATPase proton channel domain. In addition, we propose experiments to elucidate aspects of the mechanism of proton translocation across the isolated V-ATPase membrane domain. In the second Aim, we propose to determine the atomic resolution crystal structure of the subunit EGChead peripheral stalk complex and we will determine the molecular interactions that define the interface connecting V1-ATPase with the Vo proton channel domain. Results from the proposed studies will provide important molecular information on the mechanism of proton translocation and how the catalytic V1 ATPase sector and the membrane bound Vo proton channel domain interact to form a coupled enzyme complex. The proposed work will also shed light on the, as of yet poorly understood mechanism of V-ATPase activity regulation by regulated reversible enzyme dissociation and re-association, a mechanism now found to be involved in the development and maturation of cells in higher animals including human.

Public Health Relevance

The vacuolar ATPase is a large, multi subunit enzyme complex that is involved in numerous fundamental cellular processes. A defective or hyper active vacuolar ATPase can be associated with devastating human diseases such as renal tubular acidosis, osteoporosis, diabetes and cancer. Understanding the molecular origin of these diseases requires detailed knowledge of the molecular structure of the disease causing bio macromolecules. This proposal requests funds for studying the structure and mechanism of the eukaryotic proton pumping vacuolar ATPase with the goal of gaining a molecular understanding of the enzyme's role in human disease.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Upstate Medical University
Schools of Medicine
United States
Zip Code
Aggeli, Dimitra; Kish-Trier, Erik; Lin, Meng Chi et al. (2014) Coordination of the filament stabilizing versus destabilizing activities of cofilin through its secondary binding site on actin. Cytoskeleton (Hoboken) 71:361-79
Zarrabi, Nawid; Ernst, Stefan; Verhalen, Brandy et al. (2014) Analyzing conformational dynamics of single P-glycoprotein transporters by Forster resonance energy transfer using hidden Markov models. Methods 66:168-79
Wen, Po-Chao; Verhalen, Brandy; Wilkens, Stephan et al. (2013) On the origin of large flexibility of P-glycoprotein in the inward-facing state. J Biol Chem 288:19211-20
Oot, Rebecca A; Wilkens, Stephan (2012) Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase. J Biol Chem 287:13396-406
Verhalen, Brandy; Ernst, Stefan; Borsch, Michael et al. (2012) Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J Biol Chem 287:1112-27
Verhalen, Brandy; Wilkens, Stephan (2011) P-glycoprotein retains drug-stimulated ATPase activity upon covalent linkage of the two nucleotide binding domains at their C-terminal ends. J Biol Chem 286:10476-82
Mbantenkhu, MacMillan; Wang, Xiaowen; Nardozzi, Jonathan D et al. (2011) Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J Biol Chem 286:42360-70
Neelam, Sudha; Kakhniashvili, David G; Wilkens, Stephan et al. (2011) Functional 20S proteasomes in mature human red blood cells. Exp Biol Med (Maywood) 236:580-91
Couoh-Cardel, Sergio J; Uribe-Carvajal, Salvador; Wilkens, Stephan et al. (2010) Structure of dimeric F1F0-ATP synthase. J Biol Chem 285:36447-55
Oot, Rebecca A; Wilkens, Stephan (2010) Domain characterization and interaction of the yeast vacuolar ATPase subunit C with the peripheral stator stalk subunits E and G. J Biol Chem 285:24654-64

Showing the most recent 10 out of 26 publications