The major goal of mitosis is to distribute the genetic material accurately between the two daughter cells. Defects in meiosis or mitosis lead to aneuploidy, which is a significant cause of birth defects and is a hallmark of tumorigenesis. Proper spindle function relies on precise spatial and temporal control of microtubule (MT) dynamics and the integration of forces of motor proteins. Defects in regulated MT dynamics lead to spindle multi-polarity, improper kinetochore-MT attachments, delayed mitotic progression, and improper chromosome segregation. Despite the generation of an extensive parts list for the spindle, a major unanswered question is to understand how MT dynamics and motor protein activity are spatially and temporally regulated to ensure proper spindle architecture and function. This has been due, in part, to a lack of appropriate tools that could be used to relate key regulatory biochemical events to where those events are controlled spatially in the spindle. Our recent implementation of new FRET-based biosensors combined with FLIM and super resolution microscopy is now enabling us to address this important question. In this proposal we will: 1) Define how MT sliding is spatially modulated to control spindle organization by reconstituting MT sliding, and using FLIM imaging of novel intermolecular FRET reporters. These experiments will establish a paradigm for how the spatial control of motor activity contributes to the global organization of the spindle and will also define the critical features of XCTK2 that contribute to pole focusing and could be targeted for therapeutic development for treatment of tumors with centrosome amplification. 2) Define how Aurora B kinase modulates protein conformation, targeting, and function of the mitotic kinesin MCAK by testing how the CT of MCAK modulates conformation and activity. We will use Xenopus spindle assembly assays with various MCAK CT mutants and Fluorescence Lifetime Imaging of our MCAK biosensors to define where and when this conformational regulation occurs. This work will define spatial control mechanisms for the control of MCAK that will also serve as a model for regulation of protein activity by kinase networks. 3) Define how the integration of spatially distinct MT populations contributes to mitotic fidelity by testing the model that excess polymerization of non-kinetochore MTs increases mal-attached kinetochores and reduces mitotic fidelity. 3D-SIM super-resolution imaging of chromosome- MT interactions after kinesin knockdown will allow us to visualize how loss of these proteins lead to mal- oriented chromosomes. In vitro reconstitution assays using single molecule imaging and PALM/STORM will define how different MT dynamics regulators cooperatively control plus-end dynamics. Together these studies will bridge the gap in knowledge between how biochemical activities in vitro impact spindle structure and function in vivo.

Public Health Relevance

The faithful segregation of genetic material by the mitotic spindle to daughter cells is essential for the survival of an organism. The spindle is composed of microtubules and associated proteins that are utilized to attach the chromosomes to the spindle and to ensure their accurate segregation. Elucidating the mechanisms by which chromosomes are aligned and segregated will provide important insight into the accurate control of genomic fidelity, a process that goes awry in numerous proliferative diseases, such as cancer.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Deatherage, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University-Purdue University at Indianapolis
Other Basic Sciences
Schools of Medicine
United States
Zip Code
Huang, Rong; Oh, Hyunju; Arrendale, Allison et al. (2013) Intracellular targets for a phosphotyrosine peptidomimetic include the mitotic kinesin, MCAK. Biochem Pharmacol 86:597-611
Walczak, Claire E; Gayek, Sophia; Ohi, Ryoma (2013) Microtubule-depolymerizing kinesins. Annu Rev Cell Dev Biol 29:417-41
Earnshaw, W C; Allshire, R C; Black, B E et al. (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res 21:101-6
Walczak, Claire E (2012) An MBoC Favorite: Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 23:1798
Stout, Jane R; Yount, Amber L; Powers, James A et al. (2011) Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 22:3070-80
Weaver, Lesley N; Ems-McClung, Stephanie C; Stout, Jane R et al. (2011) Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 21:1500-6
Walczak, Claire E; Cai, Shang; Khodjakov, Alexey (2010) Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 11:91-102
Cai, Shang; Weaver, Lesley N; Ems-McClung, Stephanie C et al. (2010) Proper organization of microtubule minus ends is needed for midzone stability and cytokinesis. Curr Biol 20:880-5
Walczak, Claire E; Shaw, Sidney L (2010) A MAP for bundling microtubules. Cell 142:364-7
Ems-McClung, Stephanie C; Walczak, Claire E (2010) Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol 21:276-82

Showing the most recent 10 out of 24 publications