The overarching objective of this work is to gain a comprehensive understanding of the nucleic acid (NA) chaperone function of the HIV nucleocapsid (NC) protein and the Gag polyprotein precursor. Many of NC's functions rely on its chaperone activity, i.e., the ability to catalyze NA conformational rearrangements that lead to the most thermodynamically stable structure. The impact of this work is high due to NC's role in almost every stage of the viral lifecycle. NC's NA binding and chaperone function has been demonstrated to play an important role in reverse transcription, integration, RNA packaging, and viral assembly, and these studies will address open questions in our molecular level understanding of many of these processes. During the previous grant period, using biochemical assays and ensemble and single molecule biophysical approaches, we gained novel insights into the mechanism by which HIV NC facilitates NA rearrangements. We also initiated studies of NC in the context of HIV Gag. We discovered that Gag's chaperone activity requires the NC domain and surprisingly, is stimulated by inositol phosphate (IP) binding to the matrix (MA) domain. We will continue to employ innovative biophysical and biochemical approaches to improve our understanding of the mechanism of NC's chaperone activity, and will expand our studies to investigate in detail the relatively poorly understood chaperone function of NC in the context of Gag. We are particularly interested in the mechanism by which HIV MA modulates Gag's chaperone properties.
The specific aims are: (1) To probe the NA chaperone activity of WT, mutant and precursor forms of HIV-1 NC, and (2) to probe HIV-1 Gag's chaperone activity in vitro and in vivo.

Public Health Relevance

The HIV nucleocapsid protein (NC) is a chaperone protein that facilitates refolding of nucleic acids (DNA and RNA) during the retroviral lifecycle. The remarkable nucleic acid chaperone properties of NC, its high genetic barrier to mutation, and its central role in multiple stages of retrovirus replication make NC an especially attractive target for new HIV therapeutics. The overarching objective of this work, to contribute to our understanding of the nucleic acid binding and chaperone functions of HIV NC, may lead to new strategies for targeting this essential retroviral protein.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Sakalian, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Arts and Sciences
United States
Zip Code
Sun, Meng; Grigsby, Iwen F; Gorelick, Robert J et al. (2014) Retrovirus-specific differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for genomic RNA packaging. J Virol 88:1271-80
Wang, Wei; Naiyer, Nada; Mitra, Mithun et al. (2014) Distinct nucleic acid interaction properties of HIV-1 nucleocapsid protein precursor NCp15 explain reduced viral infectivity. Nucleic Acids Res 42:7145-59
Wu, Hao; Mitra, Mithun; Naufer, M Nabuan et al. (2014) Differential contribution of basic residues to HIV-1 nucleocapsid protein's nucleic acid chaperone function and retroviral replication. Nucleic Acids Res 42:2525-37
Rye-McCurdy, Tiffiny D; Nadaraia-Hoke, Shorena; Gudleski-O'Regan, Nicole et al. (2014) Mechanistic differences between nucleic acid chaperone activities of the Gag proteins of Rous sarcoma virus and human immunodeficiency virus type 1 are attributed to the MA domain. J Virol 88:7852-61
Chaurasiya, Kathy R; McCauley, Micah J; Wang, Wei et al. (2014) Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nat Chem 6:28-33
Qu, Jie; Kang, Shin Gene; Wang, Wei et al. (2014) The Arabidopsis thaliana tandem zinc finger 1 (AtTZF1) protein in RNA binding and decay. Plant J 78:452-67
Wu, Hao; Wang, Wei; Naiyer, Nada et al. (2014) Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein. Virus Res 193:39-51
Webb, Joseph A; Jones, Christopher P; Parent, Leslie J et al. (2013) Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging. RNA 19:1078-88
Mitra, Mithun; Wang, Wei; Vo, My-Nuong et al. (2013) The N-terminal zinc finger and flanking basic domains represent the minimal region of the human immunodeficiency virus type-1 nucleocapsid protein for targeting chaperone function. Biochemistry 52:8226-36
Wu, Hao; Mitra, Mithun; McCauley, Micah J et al. (2013) Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein's nucleic acid chaperone activity and retroviral replication. Virus Res 171:263-77

Showing the most recent 10 out of 31 publications