The translation of cellular messenger RNAs into distinct structural and functional proteins is central to gene expression in all domains of life an serves as a critical conduit for proteome capacity and diversity. The multistep and highly regulated process of translation is carried out by the ribosome, a two-subunit, RNA-protein assembly that is composed of 70 distinct gene products in bacteria and more than 80 distinct gene products in humans. Although the structural and functional features of the translation mechanism are thought to be conserved throughout evolution, the therapeutic administration of small-molecule antibiotics targeting the bacterial translation machinery continues to serve as a critical safeguard against existing and emerging infectious diseases around the world. Hence, key aspects of the translation mechanism and/or ribosome structure in humans must be distinct from bacteria. The loss of translation control in human cells is linked to cancerous growth and a growing body of knowledge suggests that ribosomes within cancer cells may be physically and functionally distinct. Correspondingly, knowledge of the common and distinct features of bacterial and human ribosomes offers the potential to enable improvements in the efficacies of existing antibiotics, the development of potentially novel means for antibiotic intervention and holds the promise of translation-specific strategies for cancer treatment. Progress on these fronts requires quantitative descriptions of structure-function relationships in the translation machinery of bacteria and humans as well as dynamic aspects of the translation mechanism, including time-dependent changes in ribosome composition and conformation that occur during processive protein synthesis reactions. The proposed research aims to elucidate the molecular basis of ribosome function, the origins of translational fidelity and the molecular mechanisms of antibiotic action using a battery of state-of-the-art biophysical approaches. The methods include single-molecule Total Internal Reflection Fluorescence imaging and rapid-stopped flow kinetics measurements, together with collaborative and complementary efforts in molecular dynamics simulation and high-resolution structure determination. In so doing, we aim to delineate quantitative kinetic and structural models of bacterial and human ribosome function to define key distinctions that will inform on new opportunities for small-molecule interventions for the treatment of infectious pathogens and human disease.

Public Health Relevance

Protein synthesis is a multistep, highly regulated process that is central to gene expression in all organisms and antibiotics targeting this process in bacteria often serve as a first-line of defense for the treatment of infectious disease throughout the world Using an integrated battery of biophysical methods including state-of-the-art imaging technologies we will conduct quantitative biophysical investigations of the bacterial and human translation machinery to elucidate distinctions in the mechanisms of gene expression control between bacteria and higher eukaryotic organisms. Such efforts will provide an essential foundation for the development of new and improved strategies to combat infectious pathogens and to treat human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM079238-11
Application #
9199112
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Edmonds, Charles G
Project Start
2006-09-29
Project End
2019-12-31
Budget Start
2017-01-01
Budget End
2017-12-31
Support Year
11
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Physiology
Type
Schools of Medicine
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065
Wasserman, Michael R; Alejo, Jose L; Altman, Roger B et al. (2016) Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Nat Struct Mol Biol 23:333-41
Arenz, Stefan; Juette, Manuel F; Graf, Michael et al. (2016) Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. Proc Natl Acad Sci U S A 113:7527-32
Juette, Manuel F; Terry, Daniel S; Wasserman, Michael R et al. (2016) Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat Methods 13:341-4
Kurylo, Chad M; Alexander, Noah; Dass, Randall A et al. (2016) Genome Sequence and Analysis of Escherichia coli MRE600, a Colicinogenic, Nonmotile Strain that Lacks RNase I and the Type I Methyltransferase, EcoKI. Genome Biol Evol 8:742-52
Kong, Rui; Xu, Kai; Zhou, Tongqing et al. (2016) Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 352:828-33
Ferguson, Angelica; Wang, Leyi; Altman, Roger B et al. (2015) Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis. Mol Cell 60:475-86
Noeske, Jonas; Wasserman, Michael R; Terry, Daniel S et al. (2015) High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 22:336-41
Polikanov, Yury S; Starosta, Agata L; Juette, Manuel F et al. (2015) Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A. Mol Cell 58:832-44
Wasserman, Michael R; Pulk, Arto; Zhou, Zhou et al. (2015) Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions. Nat Commun 6:7896
Burnett, Benjamin J; Altman, Roger B; Ferguson, Angelica et al. (2014) Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex. J Biol Chem 289:23917-27

Showing the most recent 10 out of 41 publications