There may be as many as 2800 Zn-Proteins in the proteome, more than 10 times the number of non-heme iron proteins or copper proteins. Besides its key functions in enzyme catalysis and protein folding and stability, Zn2+ plays major roles in normal development and growth, in cancer, in immune response, in neuro-synaptic function etc. In many of these activities, Zn2+ trafficking seems to be involved. In order to observe the cellular distribution of """"""""free"""""""" or """"""""accessible"""""""" Zn2+ and its perturbation by physiological and pathological stimuli, increasing attention has been given to the use of Sensors that undergo changes in their fluorescent properties in the presence of Zn2+. The most commonly used Sensors, TSQ (N-(6-methoxy-8-quinolyl)-p-toluensulfonamide) and its close relative, Zinquin, reveal a highly asymmetric distribution of intracellular """"""""chelatable"""""""" Zn2+ and fluorescence enhancement in response to agents such as nitric oxide donors. It is generally thought that TSQ and Zinquin bind Zn2+ from pools of """"""""free"""""""" or modestly bound metal ion to form fluorescent Zn(TSQ)2 or Zn(Zinquin)2. To the contrary, preliminary results are fully consistent with the hypothesis that these Sensors become fluorescent by forming Sensor-Zn-Protein ternary complexes. In addition, model studies with TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine), a cell permeant Zn2+ chelator used to quench Zn-Sensor fluorescence, and nitric oxide, an agent that increases intracellular Zinquin fluorescence, suggest that some of their effects may involve Sensor-Zn-Protein adduct chemistry as well. These findings raise the question with respect to TSQ, Zinquin, and other Zn2+ Sensors, """"""""What is being imaged?"""""""" The overall objective of the proposal is to address this question with complementary in vivo and in vitro methods that are both needed to resolve this question.
The specific aims are: 1. To establish a set of basic properties that characterizes intracellular imaging with TSQ and Zinquin. 2. To isolate and identify individual proteins to which TSQ is bound, putatively, TSQ-Zn-Protein adducts. 3. To define the cellular and molecular characteristics of the reaction of TPEN with TSQ and Zinquin-treated cells. 4. To investigate the generality of the findings of Specific Aims 1 and 2 in other cell types and conditions. 5. To conduct model studies with TSQ, Zinquin, and other Sensors and a selection of Zn-Proteins. 6. To test the hypothesis that Sensor-Zn-Protein adducts play a significant role in cellular Zn2+ imaging by other Sensors. The major new tool that will be employed in this study is laser ablation-inductively coupled plasma mass spectrometry. It provides the opportunity to locate Zn-Proteins separated within a proteomic background by native polyacrylamide gel electrophoresis. Together with sensitive analysis of Sensor fluorescence and protein location, Sensor-Zn-Proteins can be located and subjected to mass spectral analysis for identification. Variants of this methodology will be used to begin to answer the question raised by Zn2+ Sensor based microscopy: """"""""What is being imaged?""""""""

Public Health Relevance

Zinc is an essential nutrient that plays key roles in normal fetal development, growth, immune central nervous system function, and cancer cell proliferation, among others. Zinc fluorescent Sensors are increasingly used as microscopic probes to study how zinc participates in these processes. Because relatively little is known about how such Sensors image intracellular zinc or what they image, the objective of this proposal is to understand the chemistry underlying microscopic fluorescent imaging by commonly used zinc Sensors.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (92))
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Milwaukee
Schools of Arts and Sciences
United States
Zip Code
Karim, Mohammad Rezaul; Petering, David H (2016) Newport Green, a fluorescent sensor of weakly bound cellular Zn(2+): competition with proteome for Zn(2). Metallomics 8:201-10
Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather et al. (2015) Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes. Inorg Chem 54:11637-47
Namdarghanbari, Mohammad Ali; Bertling, Joseph; Krezoski, Susan et al. (2014) Toxic metal proteomics: reaction of the mammalian zinc proteome with Cd²?. J Inorg Biochem 136:115-21
Nowakowski, Andrew B; Wobig, William J; Petering, David H (2014) Native SDS-PAGE: high resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics 6:1068-78
Meeusen, Jeffrey W; Nowakowski, Andrew; Petering, David H (2012) Reaction of metal-binding ligands with the zinc proteome: zinc sensors and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. Inorg Chem 51:3625-32
Nowakowski, Andrew; Petering, David (2012) Sensor specific imaging of proteomic Zn2+ with zinquin and TSQ after cellular exposure to N-ethylmaleimide. Metallomics 4:448-56
Meeusen, Jeffrey W; Tomasiewicz, Henry; Nowakowski, Andrew et al. (2011) TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline), a common fluorescent sensor for cellular zinc, images zinc proteins. Inorg Chem 50:7563-73
Nowakowski, Andrew B; Petering, David H (2011) Reactions of the fluorescent sensor, Zinquin, with the zinc-proteome: adduct formation and ligand substitution. Inorg Chem 50:10124-33
Zhu, Jianyu; Meeusen, Jeffrey; Krezoski, Susan et al. (2010) Reactivity of Zn-, Cd-, and apo-metallothionein with nitric oxide compounds: in vitro and cellular comparison. Chem Res Toxicol 23:422-31
Namdarghanbari, Mohammad Ali; Meeusen, Jeffrey; Bachowski, Gary et al. (2010) Reaction of the zinc sensor FluoZin-3 with Zn(7)-metallothionein: Inquiry into the existence of a proposed weak binding site. J Inorg Biochem 104:224-31