The proposed research is to increase the resolution per minute for protein separations. Faster protein separations are crucial to developing and formulating protein drugs because the separations are the bottleneck. Proteins, particularly monoclonal antibodies, are growing rapidly as a class of candidates in the pharmaceutical pipeline. Protein drugs promise higher specificity with fewer adverse effects, but protein heterogeneity can cause immunogenicity. Separations are required to analyze for heterogeneity. The low throughput of existing separations slows the optimizing of both protein production and drug formulation. The proposal is to increase throughput significantly by introducing extremely efficient separation media made of submicrometer particles with low-adsorptivity surfaces. Three major types of separations essential for protein drugs are addressed: 1) reversed phase chromatography for detecting small mass changes, 2) hydrophilic interaction chromatography for characterizing glycosylation, and 3) hydrodynamic chromatography for assessing aggregation. These separations will be tested with therapeutic monoclonal antibodies provided by Eli Lilly. The outcome of the research will be to speed drug development and advance drug safety for therapeutic monoclonal antibodies and other protein drugs. The enabling technology will broadly benefit research in the health sciences, including top-down proteomics, protein biomarker discovery, and basic research on disease mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM101464-03
Application #
8608554
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Edmonds, Charles G
Project Start
2012-04-01
Project End
2016-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
3
Fiscal Year
2014
Total Cost
$276,818
Indirect Cost
$86,818
Name
Purdue University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Cao, Xiang; He, Yan; Smith, Jacquelynn et al. (2015) Alleviating nonlinear behavior of disulfide isoforms in the reversed-phase liquid chromatography of IgG2. J Chromatogr A 1410:147-53
Rogers, Benjamin A; Wu, Zhen; Wei, Bingchuan et al. (2015) Submicrometer particles and slip flow in liquid chromatography. Anal Chem 87:2520-6
Wu, Zhen; Wei, Bingchuan; Zhang, Ximo et al. (2014) Efficient separations of intact proteins using slip-flow with nano-liquid chromatography-mass spectrometry. Anal Chem 86:1592-8
Rogers, Benjamin J; Wirth, Mary J (2013) Slip flow through colloidal crystals of varying particle diameter. ACS Nano 7:725-31
Wu, Zhen; Rogers, Benjamin J; Wei, Bingchuan et al. (2013) Insights from theory and experiments on slip flow in chromatography. J Sep Sci 36:1871-6
Rogers, Benjamin J; Wirth, Mary J (2013) Obstructed diffusion in silica colloidal crystals. J Phys Chem A 117:6244-9
Birdsall, Robert E; Koshel, Brooke M; Hua, Yimin et al. (2013) Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide. Electrophoresis 34:753-60
Zhang, Zhaorui; Wu, Zhen; Wirth, Mary J (2013) Polyacrylamide brush layer for hydrophilic interaction liquid chromatography of intact glycoproteins. J Chromatogr A 1301:156-61
Rogers, Benjamin J; Birdsall, Robert E; Wu, Zhen et al. (2013) RPLC of intact proteins using sub-0.5 μm particles and commercial instrumentation. Anal Chem 85:6820-5
Rogers, Benjamin J; Wei, Bingchuan; Wirth, Mary J (2012) Ultra High Efficiency Protein Separations with Submicrometer Silica Using Slip Flow. LC GC N Am 30:890-897

Showing the most recent 10 out of 11 publications