This proposal aims to study the structural organization of the different types of lamin networks/meshworks during interphase and mitosis using super resolution microscopy techniques.
In Aim 1, we plan to determine whether each lamin (LA, LC, LB1, LB2) forms a separate lamina meshwork or whether the establishment of a lamina meshwork requires the interactions of different lamin isoforms in normal interphase nuclei. We will also study the interactions of each of the lamins with chromatin and nuclear pore complexes (NPCs). As animal cells enter mitosis, parts of the interphase membrane network, including the nuclear lamina, and nuclear proteins re-organize into an inter-connected network that both surrounds and permeates the spindle microtubules. This network has been referred to as either the spindle envelope (or sheath) or spindle matrix. Here we will refer to the network as the Spindle envelope/matrix (Spenix). The major challenge in defining the function of the Spenix is to visualize the behavior of Spenix proteins and link their behaviors to their functions in mitosis.
In Aim 2, we will apply super resolution microscopy to study the membrane and protein organization of the Spenix, which should open the door to dissect not only the organization of the Spenix but also the functional relationship of the Spenix and the mitotic spindle. The results from the proposed studies will provide important new information regarding the interactions and functions of the nuclear lamins and their interactions with their major interacting partners in interphase and mitosis.

Public Health Relevance

Although the study of many cellular structures have reached molecular details, the organization of the nuclear lamins in the interphase nuclear lamina and in the mitotic spindle envelope and matrix (Spenix) remain poorly defined. By applying newly developed super resolution microscopy techniques, this proposal addresses these areas of cell biology that have received very little attention. Considering the importance of the nuclear lamina and the Spenix in regulating cell proliferation, the results of the proposed studies will provide new insights into the many human diseases associated with the lamin mutations and will reveal new therapeutic targets for halting uncontrolled cell divisions in cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM106023-01
Application #
8489713
Study Section
Special Emphasis Panel (ZGM1-CBB-0 (MI))
Program Officer
Ainsztein, Alexandra M
Project Start
2013-06-01
Project End
2017-02-28
Budget Start
2013-06-01
Budget End
2014-02-28
Support Year
1
Fiscal Year
2013
Total Cost
$308,481
Indirect Cost
$85,793
Name
Carnegie Institution of Washington, D.C.
Department
Type
DUNS #
072641707
City
Washington
State
DC
Country
United States
Zip Code
20005
Tran, Joseph R; Chen, Haiyang; Zheng, Xiaobin et al. (2016) Lamin in inflammation and aging. Curr Opin Cell Biol 40:124-30
Chen, Haiyang; Zheng, Xiaobin; Xiao, Danqing et al. (2016) Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell 15:542-52
Tran, Joseph R; Zheng, Xiaobin; Zheng, Yixian (2016) Lamin-B1 contributes to the proper timing of epicardial cell migration and function during embryonic heart development. Mol Biol Cell 27:3956-3963
Zheng, Xiaobin; Yue, Sibiao; Chen, Haiyang et al. (2015) Low-Cell-Number Epigenome Profiling Aids the Study of Lens Aging and Hematopoiesis. Cell Rep 13:1505-18
Jiang, Hao; Wang, Shusheng; Huang, Yuejia et al. (2015) Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163:108-22
Butin-Israeli, Veronika; Adam, Stephen A; Jain, Nikhil et al. (2015) Role of lamin b1 in chromatin instability. Mol Cell Biol 35:884-98
Zheng, Xiaobin; Kim, Youngjo; Zheng, Yixian (2015) Identification of lamin B-regulated chromatin regions based on chromatin landscapes. Mol Biol Cell 26:2685-97
Shimi, Takeshi; Kittisopikul, Mark; Tran, Joseph et al. (2015) Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 26:4075-86
Guo, Yuxuan; Zheng, Yixian (2015) Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell 26:3379-89
Bercht Pfleghaar, Katrin; Taimen, Pekka; Butin-Israeli, Veronika et al. (2015) Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells. Nucleus 6:66-76

Showing the most recent 10 out of 17 publications