The overall goal of our research is to identify genetic elements causing hypertension. Over 90% of all hypertension develops for no known reasons. This form, called as essential hypertension, is a serious risk factor and predictor of future cardiovascular, renal diseases and/or stroke. Although genetics is known to be responsible for up to 30% of the incidence of essential hypertension, the genes conferring susceptibility to develop hypertension have been only prioritized as candidate genes in both humans and in animal models. Using rat genetic models of hypertension we have mapped several regions of the rat genome as those that contain genetic determinants of blood pressure. The important aspect of these studies is that they are quite advanced in the sense that the resolutions of mapped locations are within mega- or kilobase segments. We propose to continue these high resolution mapping studies, prioritize candidate variants and validate the prioritized genetic determinants identified in rats as candidate genetic determinants of blood pressure. The significance of this work is that it is based on systematic and sustained genetic mapping studies in rats to the best resolutions known in the field of experimental hypertension research and aligns discovery of candidate genes from human genome-wide association studies.
Four aims are proposed, each of which is focused on blood pressure quantitative trait loci on different rat chromosomes (chromosomes 1, 9, 10 and 5). The innovative aspect of the work is that it employs the state-of-the-art targeted gene disruption (knock-out) and knock-in rescue strategies using zinc-finger nucleases to further validate the prioritized genetic elements, which in at least one case, is potentially a noncoding RNA.

Public Health Relevance

Identifying genetic factors contributing to inheritance of hypertension in humans is difficult give that such factors account for only ~30% whereas the remainder larger component is the highly variable environmental factors. Using unique rat genetic models of hypertension that we have developed, we have identified many regions of the rat genome as those containing blood pressure regulatory genes and prioritized the evaluation of novel genetic elements. The proposal seeks to continue these studies and validate the underlying genetic elements.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-OBT-Z (02))
Program Officer
OH, Youngsuk
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Toledo
Schools of Medicine
United States
Zip Code
Aboualaiwi, Wissam A; Muntean, Brian S; Ratnam, Shobha et al. (2014) Survivin-induced abnormal ploidy contributes to cystic kidney and aneurysm formation. Circulation 129:660-72
Abdul-Majeed, Shakila; Mell, Blair; Nauli, Surya M et al. (2014) Cryptorchidism and infertility in rats with targeted disruption of the Adamts16 locus. PLoS One 9:e100967
Kumarasamy, Sivarajan; Gopalakrishnan, Kathirvel; Abdul-Majeed, Shakila et al. (2013) Construction of two novel reciprocal conplastic rat strains and characterization of cardiac mitochondria. Am J Physiol Heart Circ Physiol 304:H22-32
Mehrotra, Aanchal; Joe, Bina; de la Serna, Ivana L (2013) SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension. J Cell Physiol 228:2337-42
Pillai, Resmi; Waghulde, Harshal; Nie, Ying et al. (2013) Isolation and high-throughput sequencing of two closely linked epistatic hypertension susceptibility loci with a panel of bicongenic strains. Physiol Genomics 45:729-36
Liu, Jiang; Yan, Yanling; Liu, Lijun et al. (2011) Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension. J Biol Chem 286:22806-13
Gopalakrishnan, Kathirvel; Morgan, Eric E; Yerga-Woolwine, Shane et al. (2011) Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension. Hypertension 57:764-71
Kumarasamy, Sivarajan; Gopalakrishnan, Kathirvel; Toland, Edward J et al. (2011) Refined mapping of blood pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens Res 34:1263-70
Kumarasamy, Sivarajan; Gopalakrishnan, Kathirvel; Kim, Dong Hyun et al. (2011) Dysglycemia induces abnormal circadian blood pressure variability. Cardiovasc Diabetol 10:104
Kumarasamy, Sivarajan; Gopalakrishnan, Kathirvel; Shafton, Asher et al. (2010) Mitochondrial polymorphisms in rat genetic models of hypertension. Mamm Genome 21:299-306

Showing the most recent 10 out of 42 publications