Previous basic research on Protein C, a naturally occurring plasma protein, has been translated into diagnostic and therapeutic tools now used in the clinic. Activated protein C (APC) exerts two major and distinct activities, (1) anticoagulant activity and (2) initiation of cell signaling that activates multiple cytoprotective activities. The cytoprotective actions include anti-apoptotic and anti-inflammatory activities, favorable alterations of gene expression, and stabilization of endothelial barriers. Whereas the antithrombotic actions of APC have long been appreciated, only very recently has the physiologic and pharmacologic importance of APC's direct effects on cells become apparent. According to a recently established, incomplete paradigm, APC's cell signaling involves binding of APC by endothelial protein C receptor (EPCR) combined with protease activated receptor-1 (PAR1) proteolytic activation. Our preliminary data identify an additional novel cell signaling pathway for APC, namely a """"""""reelin-like"""""""" signaling pathway involving ligation of apolipoprotein E Receptor 2 (apoER2) that initiates signaling via the intracellular adaptor protein, disabled-1 (Dab1), and Src-family kinases (Src and Fyn) with subsequent downstream actions via the phosphatidylinositol-3-kinase (PI3K)-Akt survival pathway. We need to understand mechanisms for APC's cell signaling reactions and its multiple cytoprotective effects. The three Specific Aims of this hypothesis-driven project are: 1) to define the structural basis for binding of APC to apoER2;2) to prepare and characterize new APC variants with novel mutations that selectively alter APC's targeting of PAR1 and apoER2;and 3) to clarify molecular mechanisms and the roles for each of the various APC receptors responsible each of APC's direct cytoprotective effects on cells. This proposal will address multiple key questions about APC-receptor interactions. The answers from this basic research project may have direct clinical relevance with substantial impact for both basic and clinical research and with obvious clinical implications.

Public Health Relevance

Previous basic research on plasma Protein C, a naturally occurring plasma protein, was translated into diagnostic and therapeutic tools now used in the clinic. The proposed basic research studies on activated protein C will provide new insights into molecular mechanisms by which it acts directly on the blood vessel lining and on blood cells to prevent damage that can be fatal. The findings may well be translatable into future clinical advances.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL052246-19
Application #
8386992
Study Section
Special Emphasis Panel (ZRG1-VH-G (03))
Program Officer
Link, Rebecca P
Project Start
1994-12-18
Project End
2013-12-31
Budget Start
2012-12-01
Budget End
2013-12-31
Support Year
19
Fiscal Year
2013
Total Cost
$669,173
Indirect Cost
$316,791
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Deguchi, Hiroshi; Banerjee, Yajnavalka; Elias, Darlene J et al. (2016) Elevated CETP Lipid Transfer Activity is Associated with the Risk of Venous Thromboembolism. J Atheroscler Thromb 23:1159-1167
Gale, Andrew J; Bhat, Vikas; Pellequer, Jean-Luc et al. (2016) Safety, Stability and Pharmacokinetic Properties of (super)Factor Va, a Novel Engineered Coagulation Factor V for Treatment of Severe Bleeding. Pharm Res 33:1517-26
Burnier, Laurent; Boroujerdi, Amin; Fernández, Jose A et al. (2016) Physiological cerebrovascular remodeling in response to chronic mild hypoxia: A role for activated protein C. Exp Neurol 283:396-403
Bhat, Vikas; von Drygalski, Annette; Gale, Andrew J et al. (2016) Improved coagulation and haemostasis in haemophilia with inhibitors by combinations of superFactor Va and Factor VIIa. Thromb Haemost 115:551-61
Alsultan, Abdulrahman; Gale, Andrew J; Kurban, Kadijah et al. (2016) Activation-resistant homozygous protein C R229W mutation causing familial perinatal intracranial hemorrhage and delayed onset of thrombosis. Thromb Res 143:17-21
Wang, Yaoming; Zhao, Zhen; Rege, Sanket V et al. (2016) 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat Med 22:1050-5
Deguchi, Hiroshi; Sinha, Ranjeet K; Marchese, Patrizia et al. (2016) Prothrombotic skeletal muscle myosin directly enhances prothrombin activation by binding factors Xa and Va. Blood :
Griffin, John H; Fernández, José A; Lyden, Patrick D et al. (2016) Activated protein C promotes neuroprotection: mechanisms and translation to the clinic. Thromb Res 141 Suppl 2:S62-4
Sinha, Ranjeet K; Yang, Xia V; Fernández, José A et al. (2016) Apolipoprotein E Receptor 2 Mediates Activated Protein C-Induced Endothelial Akt Activation and Endothelial Barrier Stabilization. Arterioscler Thromb Vasc Biol 36:518-24
Griffin, John H; Mosnier, Laurent O; Fernández, José A et al. (2016) 2016 Scientific Sessions Sol Sherry Distinguished Lecturer in Thrombosis: Thrombotic Stroke: Neuroprotective Therapy by Recombinant-Activated Protein C. Arterioscler Thromb Vasc Biol 36:2143-2151

Showing the most recent 10 out of 54 publications