Myocardial infarction contributes a major reason for cardiovascular disease despite the multiple significant therapeutic advances. Myocardial ischemia/reperfusion injury is still a major unsolved problem. Histone acetyltransferases (HAT) and histone deacetylases (HDAC) are enzymes that modify the expression of genes by regulating chromatin structure. They also target non-histone protein and represent a general regulatory mechanism in biological signaling. HDAC inhibitors have shown efficacy as anti-cancer drugs and are emerging as exciting clinical treatments targeting solid and hematological malignancies. HDAC inhibition blunts cardiac hypertrophy. Our studies have shown that HDAC inhibition is associated with cardioprotection in acute myocardial ischemia and myocardial infarction in mouse. HDAC inhibition results in the acetylation and activation of both p38 and MKK3 in mouse hearts. We have identified that p38 is acetylated at lysine 53 and lysine 121 sites. We also demonstrated that HDAC inhibition resulted in an increase in c-kit stem cells, cell proliferation and mitosis in chronic infarcted hearts. However, the mechanism(s) by which HDAC inhibition protects the heart against injury remain unknown. Our working hypothesis is that HDAC inhibition protects the heart against myocardial injury through the activation of MKK3 and p38. We further hypothesize that the protection of HDAC inhibition is related to prevention of myocardial remodeling and an increase in newly formed cardiac components following myocardial infarction. Utilizing genetic and physiological approaches, we will test:
Specific Aim 1 : Examine HDAC activity and HDAC 3, 4 and 5 in acute myocardial ischemia, ischemia/reperfusion and chronic myocardial infarction: We will measure HDAC activity in ischemic myocardium in both acute ischemia, ischemia/reperfusion and chronic myocardial infarction. We will examine HDAC 3, 4 and 5 proteins and their subcellular distributions in both settings above.
Specific Aim 2 : Assess the roles of MKK3, p38 and Akt1 signaling pathway in the cardioprotection induced by HDAC inhibition: Using mice with deletion of MKK3, the upstream activator of p38, elimination of cardiac p38 and pharmacologic inhibition of p38, we will determine whether inhibition of MKK3 and p38 will abrogate the cardioprotective effect(s) of HDAC inhibition.
Specific Aim 3 : Decipher the molecular mechanism (s) of p38 activation using in vitro analysis and cell culture models: Using established the in vitro and cell culture model, we will characterize the acetylation of p38 and that such a post-translational modification will regulate p38 activity.
Specific Aim 4 : Explore whether HDAC inhibition is associated with myocardial repair following chronic myocardial infarction. Investigating the role of HDAC inhibition in ischemic heart could provide not only new insight into our understanding of cardiovascular biology but also development of therapeutic strategies for patients with ischemic heart disease and other cardiovascular disorders.

Public Health Relevance

This project not only provides a new insight into our understand a novel mechanism by which HDAC inhibition protects ischemic heart, but it also holds promise to develop a therapeutic strategy for patients with ischemic heart diseases and other cardiovascular disorders.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Schwartz, Lisa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Roger Williams Hospital
United States
Zip Code
DeNicola, Megan; Du, Jianfeng; Wang, Zhengke et al. (2014) Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium. Am J Physiol Endocrinol Metab 307:E630-43
Wang, Zhengke; Qin, Gangjian; Zhao, Ting C (2014) HDAC4: mechanism of regulation and biological functions. Epigenomics 6:139-50
Zhang, Ling X; DeNicola, Megan; Qin, Xin et al. (2014) Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol 307:C358-72
Zhao, Ting C; Du, Jianfeng; Zhuang, Shugang et al. (2013) HDAC inhibition elicits myocardial protective effect through modulation of MKK3/Akt-1. PLoS One 8:e65474
Zhao, Ting C (2013) Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol 12:90
Zhang, Ling; Qin, Xin; Zhao, Yu et al. (2012) Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther 341:285-93
Chen, Hong P; Denicola, Megan; Qin, Xin et al. (2011) HDAC inhibition promotes cardiogenesis and the survival of embryonic stem cells through proteasome-dependent pathway. J Cell Biochem 112:3246-55
Zhao, Ting C; Zhang, Ling X; Cheng, Guangmao et al. (2010) gp-91 mediates histone deacetylase inhibition-induced cardioprotection. Biochim Biophys Acta 1803:872-80
Zhang, L X; Zhao, Y; Cheng, G et al. (2010) Targeted deletion of NF-kappaB p50 diminishes the cardioprotection of histone deacetylase inhibition. Am J Physiol Heart Circ Physiol 298:H2154-63
Tseng, Andy; Stabila, Joan; McGonnigal, Beth et al. (2010) Effect of disruption of Akt-1 of lin(-)c-kit(+) stem cells on myocardial performance in infarcted heart. Cardiovasc Res 87:704-12