An estimated 5.7 million people in the U.S. have heart failure and more than 292,000 die from heart failure-related complications each year. While much is known about the mechanisms of cardiac hypertrophic growth and subsequent decompensation leading to failure, few therapeutic strategies are available, and these are aimed primarily at relieving symptoms, preventing hospitalization, and improving the quality of life of patients, with little overall effect on mortality. Recent research has provided new insights into the molecular signaling pathways involved in the progression of the disease;however, heart failure remains a complex multifactorial problem. A comprehensive mechanistic understanding of heart failure requires not just elucidation of targets/pathways modified during the progression of the disease, but an integrative understanding of how alterations at the level of genes and proteins affect the sophisticated interplay between the electrophysiological, Ca2+ handling, and energetic subsystems of the cardiac cell. This proposal brings together leaders in the areas of excitation-contraction coupling, mitochondrial biology, redox modulation, proteomics, and computational biology to investigate how the remodeling of ion transport pathways and mitochondrial proteins contribute to maladaptive responses in a pressure-overload model of hypertrophy, which progresses to heart failure over several weeks. The central hypothesis to be explored is that alterations in Ca2+m dynamics not only contribute to impaired energy supply and demand matching following pressure-overload, but also significantly compromise the pathways responsible for handling reactive oxygen (ROS) and nitrogen (RNS) species in the mitochondria and the cell. This imbalance results in ROS/RNS-dependent modifications of key proteins involved in EC coupling and mitochondrial oxidative phosphorylation, with concomitant effects on function that contribute to cellular injury or death. A vicious circle of these complex deleterious interactions could thus mediate decompensation of the failing heart.

Public Health Relevance

MITOCHONDRIAL DYSFUNCTION IN CARDIAC HYPERTROPHY AND FAILURE 1. Project Narrative Heart failure is a leading cause of death whose incidence is increasing despite overall decreases in mortality in the United States. Current treatments are inadequate, but new evidence has implicated changes in mitochondria, the powerhouses of the cardiac cell, in the progression and severity of the disease. This proposal will investigate the central role of mitochondria in controlling the heart's response to increased blood pressure and how to prevent the failure of energy production that leads to the death of patients with cardiovascular disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-N (F1))
Program Officer
Wong, Renee P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Liu, Ting; Takimoto, Eiki; Dimaano, Veronica L et al. (2014) Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res 115:44-54
Wright, Peter T; Nikolaev, Viacheslav O; O'Hara, Thomas et al. (2014) Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol 67:38-48
Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne et al. (2014) Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart Circ Physiol 307:H689-700
Hohendanner, Felix; McCulloch, Andrew D; Blatter, Lothar A et al. (2014) Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches. Front Pharmacol 5:35
Edwards, Joshua N; Blatter, Lothar A (2014) Cardiac alternans and intracellular calcium cycling. Clin Exp Pharmacol Physiol 41:524-32
Walther, Stefanie; Awad, Sawsan; Lonchyna, Vassyl A et al. (2014) NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol 306:H856-66
Shkryl, Vyacheslav M; Blatter, Lothar A (2013) Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging. PLoS One 8:e61525
Zima, Aleksey V; Pabbidi, Malikarjuna R; Lipsius, Stephen L et al. (2013) Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes. Am J Physiol Heart Circ Physiol 304:H983-93
Dedkova, Elena N; Blatter, Lothar A (2013) Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 58:125-33
Figueroa, Lourdes; Shkryl, Vyacheslav M; Blatter, Lothar A et al. (2013) Using two dyes with the same fluorophore to monitor cellular calcium concentration in an extended range. PLoS One 8:e55778

Showing the most recent 10 out of 32 publications