Heart failure is one of the most important diseases in the US and the world. Loss of contractility and blunted response to adrenergic stimulation are common pathophysiological features of a failing heart. Cardiac SR calcium cycling is a highly regulated process and its abnormalities play a major role in heart failure. Recently, our laboratory has identified a novel isoform of protein phosphatase 2C (PP2Ce) which has the following interesting features. PP2Ce is highly expressed in heart and the protein is targeted specifically on SR membrane of cardiomyocytes. PP2Ce has specific activity towards p-PLN without significant impact on p-RyR2. PP2Ce protein has a rapid turn- over rate and its expression is significantly induced by prolonged 2AR stimulation at post-transcriptional level. PP2Ce expression suppresses 2AR mediated induction in calcium transients and contractility, and promotes failure following ischemia/reperfusion injury. PP2Ce inactivation sustains 2AR induced contractility, protects against I/R injury and attenuates pressure-overload induced hypertrophy and heart failure. These findings lead to our exciting new hypothesis that PP2Ce is a novel phosphatase of PLN with a significant contribution to 2AR signaling and functional regulation in stressed hearts. In this proposal, we aim to uncover the regulatory mechanisms of PP2Ce expression and the functional significance of PP2Ce mediated signaling. Specifically, we plan to accomplish the following three aims:
Specific aim 1 : To investigate the molecular basis and cellular impact of PP2Ce-mediated PLN dephosphorylation. We will determine the interaction between PP2Ce and PLN, and the impact of PP2Ce expression/inactivation on SR calcium homeostasis.
Specific aim 2 : To investigate the regulatory mechanism of PP2Ce expression. We will dissect the contributing factors in PP2Ce protein expression, PLN targeting and 2AR mediated regulation of its turn-over.
Specific aim 3 : To determine the functional role of PP2Ce activity in intact heart. We will determine the functional impact of PP2Ce expression and inactivation in response to I/R injury and pressure-overload. In addition, we will determine functional significance of PLN in PP2Ce mediated cardiac protection and pathological remodeling.

Public Health Relevance

Cardiac SR calcium regulation and dysfunction is critically important to cardiomyocyte contractility under basal and diseased conditions. Investigation of a novel phosphatase for PLN, a key regulator of SR calcium cycling can bring new insights to the regulatory network in this process and helps to explore new avenues of therapy for heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL108186-02
Application #
8249820
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Adhikari, Bishow B
Project Start
2011-04-01
Project End
2015-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
2
Fiscal Year
2012
Total Cost
$385,000
Indirect Cost
$135,000
Name
University of California Los Angeles
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Sun, Haipeng; Wang, Yibin (2014) Interferon regulatory factors in heart: stress response beyond inflammation. Hypertension 63:663-4
Wang, Yibin (2014) Blind dates in sciences: dealing with rejection in peer review. Circ Res 114:944-6
Xiao, Xinshu Grace; Touma, Marlin; Wang, Yibin (2014) Decoding the noncoding transcripts in human heart failure. Circulation 129:958-60
Ren, Shuxun; Lu, Gang; Ota, Asuka et al. (2014) IRE1 phosphatase PP2Ce regulates adaptive ER stress response in the postpartum mammary gland. PLoS One 9:e111606
Foster, William H; Langenbacher, Adam; Gao, Chen et al. (2013) Nuclear phosphatase PPM1G in cellular survival and neural development. Dev Dyn 242:1101-9
Force, Thomas; Wang, Yibin (2013) Mechanism-based engineering against anthracycline cardiotoxicity. Circulation 128:98-100
Sun, Haipeng; Wang, Yibin (2012) Novel Ser/Thr protein phosphatases in cell death regulation. Physiology (Bethesda) 27:43-52
Sun, Haipeng; Wang, Yibin (2011) Restriction of big hearts by a small RNA. Circ Res 108:274-6
Marber, Michael S; Rose, Beth; Wang, Yibin (2011) The p38 mitogen-activated protein kinase pathway--a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol 51:485-90