Synaptobrevin-2/VAMP-2 (syb2) is an abundant synaptic vesicle protein essential for normal synaptic transmission in the brain. Syb2's interaction with the plasma membrane proteins, syntaxin 1 and SNAP-25, is critical for synaptic vesicle fusion and neurotransmitter release. These proteins are collectively called SNAREs (acronym for soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and belong to a family of proteins that mediate vesicle trafficking and fusion in the secretory pathway in eukaryotes. Despite extensive progress in the characterization of molecular interactions among SNAREs and their role in fusion, their precise role in synaptic vesicle trafficking events after fusion remains elusive. Rapid coupling of vesicle fusion and retrieval during neurotransmission have led us to hypothesize that SNARE proteins that drive rapid Ca2+ dependent fusion may also be responsible for ensuring rapid synaptic vesicle retrieval. Indeed, our studies in the previous grant period have revealed an essential role for syb2 in rapid synaptic vesicle endocytosis. Moreover, our initial results suggest that this function of syb2 may not be shared by SNAP-25. This observation suggests a specific role for syb2 in ensuring faithful coupling between exocytosis and endocytosis. In the next award period, we aim to investigate the role of syb2 and related v-SNAREs in exo-endocytic coupling, synaptic vesicle trafficking after endocytosis as well as fusion pore regulation using a powerful combination of fluorescence imaging, electrophysiology and electron microscopy. For this purpose, we propose three aims. In the first aim, we will define the role of v-SNAREs in coupling exocytosis and endocytosis via monitoring trafficking of fluorescently-tagged v-SNAREs synaptic vesicle proteins. In the second aim, we will determine the function of v-SNAREs in postendocytic trafficking of synaptic vesicles by detecting uptake and release fluorescent probes, monitoring neurotransmitter release and electron microscopy. Lastly, we will determine the impact of v-SNAREs on unitary neurotransmission and glutamate release kinetics using optical and electrophysiological measures. Collectively, these experiments will elucidate the degree of overlap between the fusion machinery and endocytic machinery in central synapses and the role of SNAREs in directing synaptic vesicle trajectories during retrieval, vesicle reuse as well as neurotransmitter release. Information attained from these studies will provide new insight to the synaptic substrates that may be affected by a number of in neuropsychiatric and neurological disorders including mental retardation, autism and schizophrenia.

Public Health Relevance

The experiments proposed for this project present a systematic and comprehensive effort to address the role of key SNARE molecules in the regulation of synaptic vesicle fusion, retrieval and recycling. Currently, a thorough analysis of the role of SNAREs in synaptic vesicle trafficking beyond vesicle fusion is lacking. In this project, we aim to establish the basic principles of SNARE-dependent regulation of synaptic vesicle trafficking in mammalian central synapses. Information attained from these studies will provide new insight to the molecular synaptic substrates that may be affected by a number of in neuropsychiatric and neurological disorders including mental retardation, autism and schizophrenia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH066198-09
Application #
8258333
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Asanuma, Chiiko
Project Start
2002-07-08
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
9
Fiscal Year
2012
Total Cost
$388,575
Indirect Cost
$141,075
Name
University of Texas Sw Medical Center Dallas
Department
Neurosciences
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Kavalali, Ege T; Monteggia, Lisa M (2015) How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol 20:35-9
Kavalali, Ege T; Jorgensen, Erik M (2014) Visualizing presynaptic function. Nat Neurosci 17:10-6
Gideons, Erinn S; Kavalali, Ege T; Monteggia, Lisa M (2014) Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci U S A 111:8649-54
Bal, Manjot; Leitz, Jeremy; Reese, Austin L et al. (2013) Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 80:934-46
Monteggia, Lisa M; Gideons, Erinn; Kavalali, Ege T (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73:1199-203
Nosyreva, Elena; Szabla, Kristen; Autry, Anita E et al. (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33:6990-7002
Monteggia, Lisa M; Kavalali, Ege T (2013) Scopolamine and ketamine: evidence of convergence? Biol Psychiatry 74:712-3
Raingo, Jesica; Khvotchev, Mikhail; Liu, Pei et al. (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15:738-45
Akhtar, M Waseem; Kim, Mi-Sung; Adachi, Megumi et al. (2012) In vivo analysis of MEF2 transcription factors in synapse regulation and neuronal survival. PLoS One 7:e34863
Ramirez, Denise M O; Khvotchev, Mikhail; Trauterman, Brent et al. (2012) Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73:121-34

Showing the most recent 10 out of 33 publications