UV radiation is the leading environmental cause of skin cancers. However, despite the known etiological effects of UV exposure, methods for detecting initial UV-DNA damage and the mutational processes that follow are severely limited. There is an urgent need for a high-throughput method that can directly detect UV-DNA damage at the genome level in human cells. Here, we propose to develop a new method based on damaged DNA immunoprecipitation (DDIP) enrichment followed by single- molecule, real-time (SMRT) DNA sequencing. The development of DDIP-SMRT seq will have a major impact on our ability to directly assess the effects of UV-radiation and other environmental DNA damaging agents on cellular DNA. To develop DDIP-SMRT seq, we propose two aims.
In aim 1, we will first determine the kinetic signatures of UV-induced DNA damage by SMRT DNA sequencing. In particular, we will derive the polymerase kinetic signatures for cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6-4) pyrimidone photoproducts (6-4) PPs formed by UV-radiation.
In aim 2, we will use the kinetic signatures to directly detect CPDs and (6-4) PPs in UV-exposed melanocytes. The DDIP-enriched DNA fragments from the melanocytes will serve as templates for SMRT DNA sequencing of both strands. The kinetic analysis algorithms will be optimized to enable sensitive and accurate detection of the UV-DNA damage sites at the whole-genome level. Together, these aims will transform our understanding of how solar UV radiation, the most common human cancer etiological agent, leads to skin cancer and will facilitate new cancer-prevention strategies. Once developed, the DDIP-SMRT seq method can be extended to study the effects of other environmental carcinogens.

Public Health Relevance

Solar UV radiation is the leading environmental cause of skin cancers. We will develop a method that will allow direct detection of UV-DNA damage on a genome wide scale. The method will transform our understanding of how UV exposure leads to skin cancer and can be extended to the study of other environmental carcinogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21ES024863-02
Application #
8974833
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Shaughnessy, Daniel
Project Start
2014-12-01
Project End
2016-11-30
Budget Start
2015-12-01
Budget End
2016-11-30
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Pharmacology
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Beaulaurier, John; Zhang, Xue-Song; Zhu, Shijia et al. (2015) Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun 6:7438