A diverse and well-trained scientific workforce is necessary to advance biomedical research, improve human health and to develop effective remedies for disease. The University of Missouri-Columbia (MU) is the only four-year comprehensive public university in the State of Missouri and has a critical role in training the next generation of scientists. As part of the University of Missouri-Columbia (MU) commitment to scientific training and diversity, and with prior funding from NIH, we have developed a successful and innovative program to prepare underrepresented minority students for biomedical research. We have three objectives for our Initiative to Maximize Student Diversity (IMSD) program. First, to further develop a supportive and engaged peer community of minority undergraduate students that are interested in exploring biomedical research. We will increase the number of MU freshmen/sophomore students who are exploring a career in biomedical research. Second, we will expand a program targeted at MU junior/senior students that involves these advanced undergraduates in independent research experiences and prepares them for graduate study in the biomedical sciences. Third, we will provide a structured and mentored research environment for minority graduate students to develop into independent scientists as they pursue their PhD degree in a biomedical discipline. Further development of our IMSD program will have a substantial impact on diversity at the University and on our nation's scientific workforce.

Public Health Relevance

A robust biomedical research enterprise is required to improve human health and reduce morbidity and mortality from disease. A diverse scientific workforce, which utilizes the talents and skills of all individuals, is a necessary component of a robust research enterprise. The goal of our program is to increase the diversity of PhD scientists trained in biomedical research.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Education Projects (R25)
Project #
Application #
Study Section
Minority Programs Review Committee (MPRC)
Program Officer
Janes, Daniel E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Missouri-Columbia
Schools of Medicine
United States
Zip Code
Puray-Chavez, Maritza; Tedbury, Philip R; Huber, Andrew D et al. (2017) Multiplex single-cell visualization of nucleic acids and protein during HIV infection. Nat Commun 8:1882
Porter, Jay W; Rowles 3rd, Joe L; Fletcher, Justin A et al. (2017) Anti-inflammatory effects of exercise training in adipose tissue do not require FGF21. J Endocrinol 235:97-109
Welly, Rebecca J; Liu, Tzu-Wen; Zidon, Terese M et al. (2016) Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese Rats. Med Sci Sports Exerc 48:1688-98
Figueroa-Cuilan, Wanda; Daniel, Jeremy J; Howell, Matthew et al. (2016) Mini-Tn7 Insertion in an Artificial attTn7 Site Enables Depletion of the Essential Master Regulator CtrA in the Phytopathogen Agrobacterium tumefaciens. Appl Environ Microbiol 82:5015-25
Van Gronigen Caesar, Gerialisa; Dale, Jeffrey M; Osman, Erkan Y et al. (2016) Placental development in a mouse model of spinal muscular atrophy. Biochem Biophys Res Commun 470:82-7
Mayo, L M; Moore, S G; Poock, S E et al. (2016) Technical note: Validation of a chemical pregnancy test in dairy cows that uses whole blood, shortened incubation times, and visual readout. J Dairy Sci 99:7634-7641
Harper, Jennifer L; Caesar, Gerialisa A; Pennington, Kathleen A et al. (2015) Placental changes caused by food restriction during early pregnancy in mice are reversible. Reproduction 150:165-72
Zhang, Xinyue; Xu, Xiaojun; Yang, Zhiyu et al. (2015) Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel. J Am Chem Soc 137:15742-52
Wainright, Katherine S; Fleming, Nicholas J; Rowles, Joe L et al. (2015) Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity. Am J Physiol Regul Integr Comp Physiol 309:R594-602
Swatek, Kirby N; Wilson, Rashaun S; Ahsan, Nagib et al. (2014) Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases. Biochem J 459:15-25

Showing the most recent 10 out of 33 publications