The size of the prefrontal cortex has increased dramatically in primates compared to other vertebrates and its evolutionary expansion mirrors the development of attention, memory, and executive function in these species. Developmentally, the prefrontal cortex undergoes a long maturation process that extends through puberty and into early adulthood. A number of mental illnesses have onsets linked to the maturation of the prefrontal cortex, most notably schizophrenia, which manifests itself in early adulthood. Impulse control also improves in adulthood, and failure to develop adequately is associated with delinquency, drug abuse, and other conditions of health and social significance. Little is known about the physiological changes that the prefrontal cortex undergoes during puberty and early adulthood so as to mediate increased cognitive control. Taking advantage of recent methodological and conceptual advances, we propose to investigate the changes of prefrontal cortical physiology and functional connectivity that occur after puberty. We propose to use a non-human primate model which will allow us to conduct neurophysiological recordings in the prefrontal cortex of juvenile and adult animals. Our studies will also sample the posterior parietal cortex, an area interconnected with the prefrontal cortex. This will serve as a control area allowing us to determine what is unique about the maturation of the prefrontal cortex, and it will also allow us to study changes of functional connectivity between the prefrontal cortex and posterior parietal cortex. Our study will make use of monkeys trained to perform behavioral tasks that require attention, working memory, and executive control. These experiments will offer insights on how development of the prefrontal cortex alters its physiological responses which will be essential for understanding and treating mental illnesses associated with problems of prefrontal cortical maturation.

Public Health Relevance

The proposed research will determine how the functions of prefrontal cortex neurons change between adolescence and adulthood. Knowledge drawn from these experiments will elucidate the development of higher cognitive processes such as attention and memory, which is necessary for understanding the biological basis of conditions such as Attention Deficit Disorder and mental illnesses such as schizophrenia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
4R33MH086946-04
Application #
8339479
Study Section
Special Emphasis Panel (ZMH1-ERB-L (04))
Program Officer
Rossi, Andrew
Project Start
2009-09-22
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
4
Fiscal Year
2012
Total Cost
$369,907
Indirect Cost
$119,970
Name
Wake Forest University Health Sciences
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Zhou, Xin; Zhu, Dantong; King, Samson G et al. (2016) Behavioral response inhibition and maturation of goal representation in prefrontal cortex after puberty. Proc Natl Acad Sci U S A 113:3353-8
Zhou, Xin; Qi, Xue-Lian; Constantinidis, Christos (2016) Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition. Cell Rep 14:2765-73
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian et al. (2016) Neural correlates of working memory development in adolescent primates. Nat Commun 7:13423
Zhou, Xin; Zhu, Dantong; Katsuki, Fumi et al. (2014) Age-dependent changes in prefrontal intrinsic connectivity. Proc Natl Acad Sci U S A 111:3853-8
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian et al. (2013) Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys. J Neurophysiol 110:2648-60