This is a proposal to develop a keratin based resuscitation fluid that greatly improves outcomes for patients following treatment of hemorrhage. Inadequate fluid resuscitation technology has contributed to tens of thousands of lives lost and billions of dollars of increased healthcare costs. Studies in hemorrhagic shock show that survival is primarily determined by the maintenance of functional capillary density (FCD) and subsequent tissue oxygenation. Conventional resuscitation fluids do not possess the characteristics necessary to maintain FCD. Introduction of a biocompatible, viscous biopolymer such as keratin, however, can increase capillary transmural pressure, thereby reversing capillary collapse induced during severe hemorrhage. Moreover, the high oncotic pressure of keratins can reinforce this effect by bringing more fluid into the circulation without instigating adverse interactions within the cardiovascular system, [Preclinical] blood and tissues. The resulting increase in perfusion will improve tissue oxygenation and facilitate the removal of metabolic waste, thereby averting organ failure and death. [, unlike conventional saline which is not oncotic]. The use of human hair keratin proteins as colloids offers the potential to maintain FCD better than conventional fluids. Because of the remarkable intrinsic biocompatibility of human keratins and the flexible chemistry of the keratin family of proteins, the physical, chemical, and biological properties of these materials can be controlled and optimized. Highly effective resuscitation fluids can be formulated from keratins that are easily extracted and purified to optimize blood compatibility and hemodynamic properties. Our preliminary studies show that this technology appears to be biocompatible and does not lead to thrombotic events or tissue damage. The keratin analogs are inexpensive to obtain (keratins can be extracted from either wool or human hair, both of which sell for less than $3 per pound), can be sterilized using conventional techniques, and are incredibly robust;therefore they can be stored at ambient temperatures (up to 100oF). These factors make keratin-based resuscitation fluids promising as colloidal materials for resuscitation fluid in either civilian or military applications. The major milestone for this project is demonstration of the feasibility of using keratin as a resuscitation fluid by showing a statistically significant improvement of at least 20% in FCD, [left ventricular power (LVP), ventricular-arteriol coupling (VAC), and arterial diameter, and] a statistically significant survival rate of at least 80% in the keratin treated groups compared to groups treated with conventional resuscitation fluids. In subsequent phases of development, large animal trials will be conducted to determine the effect of optimal keratin-based fluids on delayed treatment and long-term outcomes. These data will be instrumental in developing a preclinical data package to be submitted to the FDA in support of clinical trials.

Public Health Relevance

A major cause of death among people ages 1 to 44 years is traumatic injury with concomitant hemorrhage. Unfortunately there is no ideal fluid available on the market today to address the need for resuscitation from traumatic hemorrhage and shock. KeraNetics LLC, a startup company tasked with development of technology developed at the Wake Forest University School of Medicine, has a novel fluid that has been shown in pilot studies to stabilize rats after as much as a 40% blood loss. This proposal seeks to further develop this technology and lay the ground work for human clinical trials and commercialization through a focused program of preclinical research. If successful, this new keratin resuscitation fluid can be used by first responders and hospitals to save many victims of trauma-related hemorrhage and shock.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43HL099010-01A1
Application #
7906423
Study Section
Special Emphasis Panel (ZRG1-SBTS-E (10))
Program Officer
Mitchell, Phyllis
Project Start
2010-05-25
Project End
2011-05-24
Budget Start
2010-05-25
Budget End
2011-05-24
Support Year
1
Fiscal Year
2010
Total Cost
$232,644
Indirect Cost
Name
Keranetics, LLC
Department
Type
DUNS #
827054219
City
Winston Salem
State
NC
Country
United States
Zip Code
27101
Nunez, Fiesky A; Callahan, Michael F; Trach, Simon et al. (2013) Hemodynamic recovery after hypovolemic shock with lactated Ringer's and keratin resuscitation fluid (KRF), a novel colloid. Artif Cells Nanomed Biotechnol 41:293-303
Nunez, Fiesky; Trach, Simon; Burnett, Luke et al. (2011) Vasoactive properties of keratin-derived compounds. Microcirculation 18:663-9