Glycogen storage disease type 1 (GSD-1) is a group of autosomal recessive disorders caused by a deficiency in the endoplasmic reticulum-bound glucose-6-phosphatase (G6Pase) system. The disease presents with both clinical and biochemical heterogeneity consistent with the existence of two major subgroups, GSD-1a and GSD-1b. To evaluate the feasibility of gene therapy for GSD-1a, we have generated G6Pase-deficient (G6Pase-/-) mice that manifest symptoms characteristic of humans GSD-1a. We demonstrate that infusion of an adenoviral vector containing the murine G6Pase gene (Ad- mG6Pase) into G6Pase-/- mice has greatly increased the survival rate of G6Pase-/- mice, restored G6Pase activity in the liver which was accompanied by a concomitant increase in microsomal glucose-6-phosphate (G6P) uptake mediated by the G6P transporter (G6PT). Ad-mG6Pase infusion also greatly improved growth of G6Pase-/- mice, normalized plasma glucose, cholesterol, triglyceride, and uric acid profiles, and alleviated liver and kidney enlargement with near normal levels of glycogen depositions in both organs. Our data demonstrate that a single administration of a recombinant adenovirus vector can alleviate the clinical and pathological manifestations of GSD-1a in mice, suggesting that this disorder in humans can potentially be corrected by gene therapy. GSD-1b is proposed to be caused by a deficiency in microsomal G6P transport. To understand the biology and pathogenesis of this disorder, we mapped the GSD-1b locus to chromosome 11q23, characterized the G6PT cDNA and the gene. Further, we identified mutations in the G6PT gene that segregate with the GSD-1b disorder, developed a functional assay for the recombinant G6P transporter, and demonstrated that mutations uncovered in GSD-1b patients disrupt G6P transport. Our results, for the first time, define a molecular basis for functional G6Pase deficiency in GSD-1b. To broaden our understanding of the effects of mutations that cause GSD- 1b, we have characterized the transmembrane topology of the G6PT protein. Protease protection assays showed that both amino- and carboxyl termini of G6PT face the cytoplasm. This is consistent with ten and twelve transmembrane domain models for G6PT predicted by hydropathy analyses. Glycosylation scanning analysis confirmed that G6PT is anchored in the ER membrane by ten transmembrane helices. - glycogen storage disease type 1, glucose-6-phosphatase, G6P transporter, gene therapy, methionine adenosyltransferase I/III deficiency

Project Start
Project End
Budget Start
Budget End
Support Year
21
Fiscal Year
2000
Total Cost
Indirect Cost
Name
U.S. National Inst/Child Hlth/Human Dev
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C et al. (2018) Hepatic glucose-6-phosphatase-? deficiency leads to metabolic reprogramming in glycogen storage disease type Ia. Biochem Biophys Res Commun 498:925-931
Cheung, Yuk Yin; Kim, So Youn; Yiu, Wai Han et al. (2007) Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-beta. J Clin Invest 117:784-93
Chou, Janice Y; Mansfield, Brian C (2007) Gene therapy for type I glycogen storage diseases. Curr Gene Ther 7:79-88
Kim, So Youn; Chen, Li-Yuan; Yiu, Wai Han et al. (2007) Neutrophilia and elevated serum cytokines are implicated in glycogen storage disease type Ia. FEBS Lett 581:3833-8
Walker, Elizabeth A; Ahmed, Adeeba; Lavery, Gareth G et al. (2007) 11beta-Hydroxysteroid Dehydrogenase Type 1 Regulation by Intracellular Glucose 6-Phosphate Provides Evidence for a Novel Link between Glucose Metabolism and Hypothalamo-Pituitary-Adrenal Axis Function. J Biol Chem 282:27030-6
Yiu, W H; Pan, C-J; Allamarvdasht, M et al. (2007) Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice. Gene Ther 14:219-26
Ghosh, A; Allamarvdasht, M; Pan, C-J et al. (2006) Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer. Gene Ther 13:321-9
Nguyen, Andrew D; Pan, Chi-Jiunn; Weinstein, David A et al. (2006) Increased scavenger receptor class B type I-mediated cellular cholesterol efflux and antioxidant capacity in the sera of glycogen storage disease type Ia patients. Mol Genet Metab 89:233-8
Kim, So Youn; Nguyen, Andrew D; Gao, Ji-Liang et al. (2006) Bone marrow-derived cells require a functional glucose 6-phosphate transporter for normal myeloid functions. J Biol Chem 281:28794-801
Shieh, J-J; Pan, C-J; Mansfield, B C et al. (2005) In islet-specific glucose-6-phosphatase-related protein, the beta cell antigenic sequence that is targeted in diabetes is not responsible for the loss of phosphohydrolase activity. Diabetologia 48:1851-9

Showing the most recent 10 out of 40 publications