Despite advances in public health and medical therapeutics, infectious diseases continue to represent the leading cause of morbidity and mortality worldwide which extracts a considerable financial and societal toll even in developed countries due to factors such as emerging pathogens, AIDS or other immunocompromising conditions, and antimicrobial resistance. Between 1980 and 1992, the U.S. death rate from infectious diseases, excluding HIV/AIDS, rose by 22%. Infectious diseases are presently the third leading cause of death in the U.S. and the leading cause worldwide. Familiar bacterial pathogens such as Salmonella and Mycobacterium tuberculosis continue to contribute to the deaths of millions of people each year, while other pathogens such as Escherichia coli 0157:H7 and community-acquired Methicillin-Resistant Staphylococcus aureus have emerged as new threats. The recent specter of bioterrorism has only served to heighten concern that a better understanding of the pathogenesis of infection is needed. The training of new scientists who can elucidate basic mechanisms of microbial pathogenesis will be critical for the formulation of improved strategies to prevent, diagnose and treat infectious diseases. This application for renewed support of a Training Program in Bacterial Pathogenesis centers around an established and highly interactive interdisciplinary research community and the University of Washington. The goal of the program is to provide comprehensive interdisciplinary training and mentorship for pre- and post-doctoral trainees who seek to understand fundamental cellular and molecular mechanisms of the interactions between bacterial pathogens and their hosts. This training will ultimately allow them to obtain new scientific insights as independent investigators that can lead to novel approaches for the prevention and management of infectious diseases.

Public Health Relevance

This is a program to provide research training to scientists who study bacterial infections such as typhoid and tuberculosis. An increased understanding of these conditions will be essential for the development of improved strategies for the prevention and treatment of human infections.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Robbins, Christiane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Kinkel, Traci L; Ramos-Montañez, Smirla; Pando, Jasmine M et al. (2016) An essential role for bacterial nitric oxide synthase in Staphylococcus aureus electron transfer and colonization. Nat Microbiol 2:16224
Gall, Alevtina; Fero, Jutta; McCoy, Connor et al. (2015) Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS One 10:e0129055
Pagán, Antonio J; Ramakrishnan, Lalita (2015) Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harb Perspect Med 5:
Pagán, Antonio J; Yang, Chao-Tsung; Cameron, James et al. (2015) Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment. Cell Host Microbe 18:15-26
Adams, Kristin N; Szumowski, John D; Ramakrishnan, Lalita (2014) Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J Infect Dis 210:456-66
Fang, Ferric C; Weiss, Günter (2014) Iron ERRs with Salmonella. Cell Host Microbe 15:515-6
Christensen, Quin H; Brecht, Ryan M; Dudekula, Dastagiri et al. (2014) Evolution of acyl-substrate recognition by a family of acyl-homoserine lactone synthases. PLoS One 9:e112464
LaRock, Christopher N; Yu, Jing; Horswill, Alexander R et al. (2013) Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected]. PLoS One 8:e62337
Szumowski, John D; Adams, Kristin N; Edelstein, Paul H et al. (2013) Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol 374:81-108
Christensen, Quin H; Grove, Tyler L; Booker, Squire J et al. (2013) A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. Proc Natl Acad Sci U S A 110:13815-20

Showing the most recent 10 out of 30 publications