Recognizing the need to curb the spread of vectorborne diseases, the University of California at Davis has recently approved a Designated Emphasis in the Biology of Vectorborne Diseases, the goal of which is to train graduate and postgraduate fellows in the biology of vectorborne viral, bacterial, and parasitic agents of human and animal diseases and their arthropod vectors. Funds are requested to enhance this new training program by providing support for two pre-doctoral and 2 post-doctoral trainees per year for a 5-year funding period. In addition, UC Davis has provided institutional matching funds to support two additional Ph.D. students. The multidisciplinary training program, which will be directed by Dr. Gregory Lanzaro, will be based in the Center for Vectorborne Diseases, and will involve a highly qualified, well-funded training faculty from the Schools of Veterinary Medicine and Medicine and the College of Agricultural and Environmental Sciences. The pre-doctoral trainees will be recruited from six affiliated Ph.D. programs, namely the Department of Entomology, and the Graduate Groups in Biochemistry and Molecular Biology, Comparative Pathology, Epidemiology, Immunology, and Microbiology. Trainees will be selected by an Advisory and Admissions Committee based upon academic excellence and demonstrated interest in the biology of vectorborne diseases, with special recruitment effort from underrepresented racial and ethnic groups, individuals with disabilities, and individuals from disadvantaged backgrounds. Didactic courses in microbiology, immunology, epidemiology, genetics, population genomics of pathogens and arthropod vectors, vector ecology and control, disease pathology and diagnosis will be offered in the curriculum for trainees. In addition, trainees will attend courses on responsible conduct of research as well as a series of lecture-discussion and guest-speaker seminars on research ethics offered through the Office of Research and Office of Graduate Studies. Trainees will be required to attend research seminars and discussion groups on topics relevant to the training program and present their research at an annual research retreat. Each trainee's academic progress will be reviewed annually by an Advisory and Admissions Committee.

Public Health Relevance

Recent Institute of Medicine (lOM) reports, including 2003, 2006, and 2008, all emphasize a deficiency of expertise in vectorborne diseases in U.S.A. Yet, vectorborne diseases remain among the most important human and veterinary health problems, both nationally and internationally. This revised T32 Training Grant application focuses on training pre-doctoral and post-doctoral scholars in the biology of arthropod vectors of human and animal diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI074550-04
Application #
8287059
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Mcsweegan, Edward
Project Start
2009-08-07
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
4
Fiscal Year
2012
Total Cost
$192,069
Indirect Cost
$12,781
Name
University of California Davis
Department
Public Health & Prev Medicine
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Worwa, Gabriella; Andrade, Christy C; Thiemann, Tara C et al. (2014) Allele-specific qRT-PCR demonstrates superior detection of single nucleotide polymorphisms as genetic markers for West Nile virus compared to Luminex® and quantitative sequencing. J Virol Methods 195:76-85
Brenton, Ashley A; Souvannaseng, Lattha; Cheung, Kong et al. (2014) Engineered single nucleotide polymorphisms in the mosquito MEK docking site alter Plasmodium berghei development in Anopheles gambiae. Parasit Vectors 7:287
Sanford, Michelle R; Ramsay, Steven; Cornel, Anthony J et al. (2013) A preliminary investigation of the relationship between water quality and Anopheles gambiae larval habitats in Western Cameroon. Malar J 12:225
Lee, Yoosook; Collier, Travis C; Sanford, Michelle R et al. (2013) Chromosome inversions, genomic differentiation and speciation in the African malaria mosquito Anopheles gambiae. PLoS One 8:e57887
Lee, Yoosook; Seifert, Stephanie N; Nieman, Catelyn C et al. (2012) High degree of single nucleotide polymorphisms in California Culex pipiens (Diptera: Culicidae) sensu lato. J Med Entomol 49:299-306
Andrade, Christy C; Maharaj, Payal D; Reisen, William K et al. (2011) North American West Nile virus genotype isolates demonstrate differential replicative capacities in response to temperature. J Gen Virol 92:2523-33
Marsden, Clare D; Lee, Yoosook; Nieman, Catelyn C et al. (2011) Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol 20:4983-94
Sanford, Michelle R; Demirci, Berna; Marsden, Clare D et al. (2011) Morphological differentiation may mediate mate-choice between incipient species of Anopheles gambiae s.s. PLoS One 6:e27920
Mayo, C E; Crossley, B M; Hietala, S K et al. (2010) Colostral transmission of bluetongue virus nucleic acid among newborn dairy calves in California. Transbound Emerg Dis 57:277-81
Horton, Ashley A; Lee, Yoosook; Coulibaly, Cheick A et al. (2010) Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection. Malar J 9:160