Research during the past several decades has made impressive advances in our understanding of the genetic basis of cancer and the aberrant signaling components and mechanisms that drive cancer progression and malignant growth. In recent years, the completion of the sequencing of the human and more recently, of multiple cancer cell genomes, coupled with the rapid development of technologies for the genome-wide genetic, cellular and biochemical profiling of the cancer cell has greatly accelerated these advances. This pace will surely be accelerated exponentially in the future. The accumulation of new information is both impressive and daunting. Therefore, a major challenge of the next decade will be to translate basic cancer research advances into new molecularly targeted cancer therapies. The premise of the Cancer Cell Biology Training Program (CCBTP) is that cancer biology is a unique, interdisciplinary biomedical science that encompasses experimental approaches and didactic knowledge from cell biology, molecular biology, biochemistry, genetics, immunology, microbiology, pharmacology, epidemiology, toxicology, pathology, and physiology. Doctoral students will become well-trained in the paradigms of molecular and cellular biology from more traditional department- or curriculum-based training programs. Rarely will they receive significant training in the pathobiology and treatment of cancer. With an increasing emphasis on multidisciplinary, translational, disease-oriented research, the need to address this deficiency in graduate student training has become of greater urgency. Thus, the broad goal of this program is to provide comprehensive training in translational cancer biology to allow students to effectively contribute to the new wave of translational research. The CCBTP provides a strong emphasis on the histopathology of cancer and exposure to other topics crucial to tumor biology, in particular personalized medicine and molecularly targeted anti-cancer drug discovery and development. Therefore, it fosters the training of doctoral candidates who are uniquely trained and who are clearly distinguished from those of individual departments or other training programs funded by the National Institutes of Health at the University of North Carolina at Chapel Hill

Public Health Relevance

Biomedical research doctoral students are well trained in the paradigms of molecular and cellular biology of cancer, but rarely do these students receive significant training in the pathobiology and treatment of cancer. With an increasing emphasis on translational, disease- oriented research, the need to address this deficiency in graduate student training has become of major urgency. This proposal is for continuation for an interdisciplinary Cancer Cell Biology Training Program for predoctoral students at the University for North Carolina at Chapel Hill.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee B - Comprehensiveness (NCI)
Program Officer
Damico, Mark W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Simon, Jeremy M; Hacker, Kathryn E; Singh, Darshan et al. (2014) Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 24:241-50
Chism, David D; De Silva, Dinuka; Whang, Young E (2014) Mechanisms of acquired resistance to androgen receptor targeting drugs in castration-resistant prostate cancer. Expert Rev Anticancer Ther 14:1369-78
Giffin, Louise; Damania, Blossom (2014) KSHV: pathways to tumorigenesis and persistent infection. Adv Virus Res 88:111-59
Sinnott, Rebecca; Winters, Leah; Larson, Brittany et al. (2014) Mechanisms promoting escape from mitotic stress-induced tumor cell death. Cancer Res 74:3857-69
Cook, D R; Rossman, K L; Der, C J (2014) Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 33:4021-35
Hast, Bridgid E; Cloer, Erica W; Goldfarb, Dennis et al. (2014) Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res 74:808-17
Bryant, Kirsten L; Mancias, Joseph D; Kimmelman, Alec C et al. (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39:91-100
Giffin, Louise; Yan, Feng; Ben Major, M et al. (2014) Modulation of Kaposi's sarcoma-associated herpesvirus interleukin-6 function by hypoxia-upregulated protein 1. J Virol 88:9429-41
Cooper, Matthew J; Cox, Nathan J; Zimmerman, Eric I et al. (2013) Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia. PLoS One 8:e66755
Hayes, Tikvah K; Der, Channing J (2013) Mutant and wild-type Ras: co-conspirators in cancer. Cancer Discov 3:24-6

Showing the most recent 10 out of 40 publications